FreshRSS

Normální zobrazení

Jsou dostupné nové články, klikněte pro obnovení stránky.
PředevčíremHlavní kanál
  • ✇IEEE Spectrum
  • Yamaha Joins Global Move to Battery Swaps for E-bikesWillie Jones
    E-bikes are today a growing component of the global transition away from fossil fuels—possibly more than the car-and-truck-focused sustainability crowd appreciates. E-bikes’ rapid growth in recent years stems in part from their simple solution to the range issue that big, hulking cars typically don’t offer. E-bikes are powered by relatively small batteries that can be wrangled by the average person who can handle a carton of milk.Because of that form factor, battery swapping for e-bikes is a qui
     

Yamaha Joins Global Move to Battery Swaps for E-bikes

12. Únor 2024 v 20:02


E-bikes are today a growing component of the global transition away from fossil fuels—possibly more than the car-and-truck-focused sustainability crowd appreciates. E-bikes’ rapid growth in recent years stems in part from their simple solution to the range issue that big, hulking cars typically don’t offer. E-bikes are powered by relatively small batteries that can be wrangled by the average person who can handle a carton of milk.

Because of that form factor, battery swapping for e-bikes is a quick and simple method for staying powered up, whereas for a traditional four-wheeled EV, swaps are a more involved process for doing the equivalent of filling a gas tank.

The Japanese conglomerate Yamaha Motor Co., best known for its motorcycles and motorboats, is now looking to expand into this growing marketplace, too. At the end of last year, Yamaha announced it’d formed a subsidiary called Enyring. The new entity, which is slated to kick off operations in Germany and the Netherlands in early 2025, says they’ll partner with manufacturers for maximum compatibility among models and types of e-bike. Also crucial to Yamaha’s plan is that the batteries will not be owned, but rented, by the e-bike owners. The rental contract will entitle a battery user to unlimited swaps as long as their account with Yamaha remains in good standing. And Yamaha says it already has plans in place for breaking down the cells so they can be recycled.

“Today, noisy, polluting, two-stroke gasoline engines are still ubiquitous across Asia,” says Sam Abuelsamid, Principal Research Analyst for Mobility Ecosystems at Guidehouse Insights “Converting those to electric power will go a long way toward helping countries reach their greenhouse gas emission-reduction targets. Battery swapping also addresses the infrastructure issues that come along with the growing presence of two- and three-wheeled vehicles.”

Abuelsamid notes that as this energy-replenishing modality becomes the norm, companies like Yamaha, China’s Nio, and Taiwan’s Gogoro (the latter two with hundreds of battery-swapping stations and self-service swapping kiosks already in operation) will raise the bar on quality control for these small EV batteries for their own economic self-interest.

“It makes sense to build better batteries with good battery management systems and software for enhanced thermal control,” says Abuelsamid. “Higher-quality batteries, handled in an ecosystem where corporate facilities manage the recharging process better than someone would at home, increases the chances that a battery will handle maybe 1,000 charge cycles before it no longer holds enough charge and needs to be recycled.” And longer life means more profitability for a company offering batteries-as-a-service.

The vast e-bike marketplace

In 2022, two- and three-wheeled vehicles accounted for 49 percent of global EV sales. And according to a recent report from Rethink Energy, there are an estimated 292 million e-bikes and e-trikes currently in service. By comparison, the International Energy Agency says there are now about 26 million electric cars on the world’s roads.

According to analysis firm Markets and Markets, battery swapping was a US $1.7 billion industry in 2022. Industry revenues are expected to reach $11.8 billion by 2027. Yamaha is by no means a battery-swapping pioneer, but its entry into that space signals a powerful retort to skeptics who still believe that battery swapping will never be as commonplace as pulling up to a charging facility and plugging in. (However, attempts to reach Yamaha spokespeople for their comment on the Enyring spinoff proved unsuccessful.)

The enticing growth in the compact EV market has been spurred by the near ubiquitous use of e-bikes and electric scooters by couriers for delivery services that drop take-out food and groceries at online shoppers’ doors. Plus, for daily commutes, e-bikes are proving increasingly attractive as eco-friendly alternatives to fossil-fueled vehicles. Battery-swapping ventures like Yamaha’s will also put salve on pain points related to the rapidly growing presence of compact EVs. Among these are: a shortage of places where batteries can be charged; the length of time (now measured in hours) charging usually takes; human error when charging that could cause destructive, and perhaps deadly, battery fires; and uncertainty about what to do with a battery when it is spent and is no longer useful as an energy storage unit for propulsion.

Just as important is what battery swapping will do to solve another of plug-in electric vehicles’ bugbears. IEEE Spectrum reported on the issues surrounding battery charging and the lingering belief that EV batteries are fire hazards. Though empirical evidence shows that EVs, by and large, are much less likely than vehicles with internal combustion engines to catch fire, that hasn’t stopped some municipal governments from placing strict limits on the places where EV batteries can be plugged in. But with battery swapping growing in popularity, who would ultimately need to?

  • ✇IEEE Spectrum
  • This Lockheed Martin Researcher’s Work on UAVs Saves LivesWillie Jones
    Kingsley Fregene wants to keep people out of harm’s way—so much so that he has ordered his life around that fundamental goal. As director of technology integration at Lockheed Martin, in Grand Prairie, Texas, he leads a team that is actively pursuing breakthroughs designed to, among other things, allow life-saving missions to be performed in hazardous environments without putting humans at risk. Fregene, an IEEE Fellow, has supervised the development of algorithms for autonomous aircraft used f
     

This Lockheed Martin Researcher’s Work on UAVs Saves Lives

1. Únor 2024 v 20:00


Kingsley Fregene wants to keep people out of harm’s way—so much so that he has ordered his life around that fundamental goal. As director of technology integration at Lockheed Martin, in Grand Prairie, Texas, he leads a team that is actively pursuing breakthroughs designed to, among other things, allow life-saving missions to be performed in hazardous environments without putting humans at risk.

Fregene, an IEEE Fellow, has supervised the development of algorithms for autonomous aircraft used for military missions and disaster-recovery operations. He also contributed to algorithms enabling autonomous undersea vehicles to inspect offshore oil and gas platforms after hurricanes so that divers don’t have to.

Kingsley Fregene


Employer

Lockheed Martin in Grand Prairie, Texas

Title

Director of technology integration and intellectual property

Member grade

Fellow

Alma maters

Federal University of Technology in Owerri, Nigeria; University of Waterloo in Ontario, Canada

One of his recent projects was helping to design the world’s first autonomous unmanned aircraft system in which the entire vehicle—not just its rotors—spins. The micro air vehicle was inspired by the aerodynamics of maple seeds, whose twirling slows and prolongs their descent.

The benefits of unmanned aerial vehicles

In a major project more than a decade ago, Fregene and colleagues at Lockheed Martin teamed up with Kaman Aerospace of Bloomfield, Conn., on an unmanned version of its K-Max helicopter. The K-Max can ferry as much as 2,700 kilograms of cargo in a single trip. The Lockheed team created and implemented mission systems and control algorithms that augmented the control system already on the helicopter, enabling it to fly completely autonomously.

The U.S. Marine Corps used the autonomous K-Max helicopters for resupply missions in Afghanistan. It’s been estimated that those delivery flights made hundreds of ground-based convoy missions unnecessary, thereby sparing thousands of troops from being exposed to improvised explosive devices, land mines, and snipers.

The autonomous version of the K-Max also has been demonstrated in disaster-recovery operations. It offers the possibility of keeping humanitarian aid workers away from dangerous situations, as well as rescuing people trapped in disaster zones.

“It is often better to fly in lifesaving supplies instead of loading trucks with supplies to bring them along roads that might not be passable anymore,” Fregene says.

K-Max and one of Lockheed Martin’s small UAVs, the Indago, have been used to fight fires. Indago flies above structures engulfed in flames and maps out the hot zones, on which K-Max then drops flame retardant or water.

“This collaborative mission between two of our platforms means no firefighters are put in harm’s way,” Fregene says.

He and his team also helped in the development of the maple seed–inspired Samarai, the first autonomous wholly rotating unmanned aircraft system. The 41-centimeter-long drone weighs a mere 227 grams. It depends on an algorithm that tells an actuator when and how much to adjust the angle of a flap that determines its direction.

Compared with other aircraft, the spinning drone is simpler to produce, requires less maintenance, and is less complex to control because its only control surface is the trailing-edge flap.

man holding a airplane like model in his outstretched arm with trees in the background IEEE Fellow Kingsley Fregene holds up the maple seed–inspired Samarai, the first autonomous wholly rotating unmanned aircraft system.Kingsley Fregene

Saving lives in Nigeria

Fregene’s aim to keep people safe started with his first after-school job, as a bus conductor, when he was in the sixth grade. As part of the job, in Oghara, Nigeria, then a small fishing village along the Niger River, he collected fares and directed passengers on and off the bus.

With no traffic cops or traffic lights, there often was chaos at major intersections. People would get injured, and he occasionally would get out and direct traffic.

“I, a little guy, stood out there with a bright orange shirt and started directing traffic,” he says. “It’s amazing that people paid attention and listened to me.”

Many youngsters are inspired to pursue engineering by fiddling with gadgets. Not Fregene.

“The circumstances of my childhood did not provide opportunities to get my hands on devices to tinker with,” he says. “What we had were a lot of opportunities to observe nature.”

The presence of oil and gas installations in his village, which is in the oil-producing part of Nigeria, led him to wonder how they worked and how they were remotely controlled. They didn’t remain mysterious for long.

While attending the Federal University of Technology in Owerri, Nigeria, he interned at the Nigerian National Petroleum Corp., which was installing those remote operating systems, calibrating them, and validating their operation.

After graduating first in his class in 1996 with a bachelor’s degree in electrical and computer engineering, he went on to graduate school at the University of Waterloo, in Ontario, Canada, where he researched autonomy and automatic control systems. While earning master’s and doctoral degrees, both in electrical and computer engineering, he found time to help those more needy than he was.

He joined a team of student volunteers who organized drop-in homework clubs and provided mentoring to at-risk grade school students in the community. The activity won him the university’s President’s Circle Award in 2001.

Thinking back on that time, Fregene recalls his interaction with one girl whose life he helped turn around.

“She was dragged kicking and screaming most of the time to complete these sessions,” Fregene recalls. “But she started believing in herself and what she could do. And everything changed. She ended up getting accepted to the University of Waterloo and became part of the UW tutor team I was leading.”

Fregene says his commitment to the tutoring and mentoring program came from having once been in need of academic assistance himself. Although he had excellent grades in history and language arts, he did poorly in mathematics and science. Things turned around for him in the ninth grade when a new teacher had a particular way of teaching math that “turned the light bulb on in my brain,” he says. “My grades took off right after he showed up.”

After completing his doctorate in 2002, he began working as an R&D engineer at a Honeywell Aerospace facility in Minneapolis. During six years there, he worked on the development of unmanned aerial vehicles including a drone that was used in remote sensing of chemical, biological, radiological, nuclear, and explosive hazards. The drone became the world’s first aerial robot used for nuclear disaster recovery when it flew inside the Fukushima Dai-ichi nuclear power plant in the aftermath of a 2011 tsunami that struck Japan and knocked out the plant’s power and cooling, causing meltdowns in three reactor cores.

At Honeywell he also worked on microelectromechanical systems, which are used in gyroscopes and inertial measurement units. Both MEMS tools, which are used to measure the angular motion of a body, can be found in cellphones. Fregene also worked on a control system to make corrections to the imperfections that diminished the MEMS sensors’ accuracy.

He left the company in 2008 to become lead engineer and scientist at the Lockheed Martin research facility in Cherry Hill, N.J.

IEEE membership has its benefits

Fregene became acquainted with IEEE as an undergrad by reading journals such as the IEEE Transactions on Automatic Control and the IEEE Control Systems magazine, for which he has served as guest editor.

He joined IEEE in grad school, and that decision has been paying dividends ever since, he says.

The connections he made through the organization helped him land internships at leading laboratories, starting him on his career path. After meeting researchers at conferences or reading their papers in IEEE publications, he would send them notes introducing himself and indicating his interest in visiting the researcher’s lab and working there during the summer. The practice led to internships at Los Alamos National Laboratory, in New Mexico, and at the Oak Ridge National Laboratory, in Tennessee.

The IEEE connections helped him get his first job. While working on his master’s degree, he presented a paper at the 1999 IEEE International Symposium on Intelligent Control.

“After my presentation,” he says, “somebody from Honeywell came over and said, ‘That was a great presentation. By the way, these are the types of things we do at Honeywell. I think it would be a great place for you when you’re ready to start working.’”

Fregene remains active in IEEE. He’s on the editorial board of the IEEE Robotics and Automation Society, serves as an associate editor for the IEEE Robotics and Automation Magazine, and recently completed two terms as chair of the IEEE technical committee on aerospace controls.

IEEE “is the type of global organization that provides a forum for stellar researchers to communicate the work they are doing to colleagues,” he says, “and for setting standards that define real-life systems that are changing the world every day.”

❌
❌