FreshRSS

Zobrazení pro čtení

Jsou dostupné nové články, klikněte pro obnovení stránky.

MIT spinout Arnasi begins applying LiquiGlide no-stick technology to help patients

The no-stick technology invented by Professor Kripa Varanasi and David Smith SM ’11, initially commercialized as LiquiGlide in 2012, went viral for its uncanny ability to make materials that stick to their containers — think ketchup, cosmetics, and toothpaste — slide out with ease.

Now, the company that brought you Colgate no-stick toothpaste is moving into the medical space, and the applications could improve millions of lives. The company, which recently rebranded as the Arnasi Group, has developed an ambitious plan to launch three new biomedical products over the next four years.

The first of those products, called Revel, is a deodorizing lubricant designed for ostomy pouches, which are used by individuals to collect bodily waste after digestive system surgeries. Up to 1 million people rely on such pouches in the United States. Ostomy pouches must be emptied multiple times per day, and issues resulting from sticking or clogging can cause embarrassing, time-consuming situations for the people relying on them.

Arnasi’s deodorizing lubricant can prevent clogging and simplify the ostomy pouch cleaning process. Unlike other options available, one application of its lubricant works for the entire day, the Arnasi team says, and they designed a single unit dose that fits in your pocket for added convenience.

An ostomy pouch “significantly impacts a person’s lifestyle,” Varanasi says. “They need to keep it clean, and they need to use it at all times. We are solving a very important problem while helping people by giving their dignity and lifestyles back.”

Revel, Arnasi’s FDA-registered product, officially launched this month, and it has already received promising feedback from nurses and patients.

Margaret is a nurse who relies on an ostomy pouch herself and cares for patients who need them after receiving colostomies and ileostomies. She received samples of Revel at a recent conference and says it could dramatically improve both her and her patients’ lives.

“These pouches need to be emptied frequently, and sometimes that’s very difficult to do,” she says. “This particular product makes everything slide out without any problems at all, and it’s a wonderful improvement. It also lasts long enough to empty the pouch three to four times, which is great because you don’t have to carry a bunch of this stuff around.”

Margaret’s experience echoes feedback Arnasi’s team has heard from many others.

“When we showed it to the nurses, they were blown away with the product,” says Arnasi CEO Dan Salain. “They asked us to get this product out to the market as fast as we could, and so that’s what we’re doing.”

Arnasi’s next medical products will be used to prevent biofilm and bacterial infections caused by implants and catheters, and will also help people with cystic fibrosis.

“We want to create products that really help people,” Salain says. “Anything that’s implantable in the body, whether it’s a catheter, a hip, knee, or joint replacement, a breast implant, a bladder sling — those things lend themselves to our technology.”

From packages to patients

Varanasi initially developed Arnasi’s liquid-impregnated surface technology with Smith, Arnasi’s co-founder and current CTO, when Smith was a graduate student in Varanasi’s lab. The research was initially funded by the MIT Energy Initiative and the MIT Deshpande Center to work on solid-liquid interfaces with broad applications for energy, water, and more.

“There’s this fundamental friction constraint called the no-slip boundary condition between a liquid and a solid, so by creating a new surface in which we can infuse a liquid that is less viscous, we can now get the product to easily slide on surfaces,” Varanasi explains. “That aha moment meant we could get around a fundamental constraint in fluid dynamics.”

Still, sticky surfaces are everywhere, and the scientific co-founders had to decide where to apply their technology first. Shortly after the invention, Varanasi was at home trying to decide on the best application when he saw his wife across the kitchen table trying to get honey out of a bottle. It was another aha moment.

Soon after, Varanasi’s team entered the MIT $100K Entrepreneurship Competition. The competition — and the corresponding videos of ketchup and other materials sliding out their bottles with ease — created a media storm and a frenzy of attention.

“The press exploded,” Varanasi says. “For three months, my phone didn’t stop ringing. My group website crashed. There was a lot of market pull and in response, we founded the company.”

Arnasi, still operating as LiquiGlide, licensed the intellectual property from MIT’s Technology Licensing Office and eventually signed large deals with some of the world’s biggest consumer packaged goods companies, who used it to create products like fully recyclable toothpaste.

“There is so much waste just because we can't get all of the product, be it food, cosmetics, or medical products, out of containers,” Varanasi says. “Fifty billion-plus packages are sold every year, and 5 to 10 percent of product is left behind on average. So, you can imagine the CO2 footprint of the wasted product. And even though a lot of this is in recyclable packaging, they can’t be recycled because you need to wash out all the product. The water footprint of this is huge, not to mention the wasted product.”

While all of that was going on, Arnasi’s team was also looking into the biomedical space. For instance, Varanasi’s lab previously showed the technology could be used to prevent occlusion from blood clots and thrombosis and reduce biofilm formation, among other applications.

After studying the industry and speaking with patients and nurses, Arnasi realized a better lubricant for ostomy pouches could improve millions of people’s lives.

“Stool accumulates in these pouches outside of people’s bodies, and they need to empty it up to eight times a day,” explains Brienne Engel, Arnasi’s director of business development. “That process has a lot of challenges associated with it: It can be difficult to drain, leaving a lot of mass behind, it takes a long time to drain, so you can spend a long time in a restroom trying to clear out your pouch, and then there’s something called pancaking that can push the pouch off the [surgical opening], introducing issues like leakage, odor, and failure of the ostomy pouching system.”

Ostomy and beyond

Arnasi’s ostomy lubricant, Revel, is the first non-water-based solution on the market, and as-yet unpublished third-party testing has shown it allows for faster, more complete pouch drainage, along with other benefits.

“A lot of the existing brands treat their consumers like patients, but what we’ve found is they want to be treated like people and have a consumer experience,” Salain says. “The magic we saw with our toothpaste product was people got this amazing consumer experience out of it, and we wanted to create the same thing with Revel.”

Now Arnasi is planning to use its technology in medical products for skin infections, cystic fibrosis, and in implantable catheters and joint replacements. Arnasi’s team believes those last two use cases could prevent millions of deadly infections.

“When people are getting hemodialysis catheters, they have a 33 percent risk of developing infections, and those that do get those infections have a 25 percent chance of dying from them,” Engel says. “Taking our underlying technology and applying it to catheters, for example, imparts anti-biofilm properties and also prevent things like thrombosis, or blood clotting on the outside of these catheters, which is a problem in and of itself but also provides a space for bacteria to seed.”

Ultimately, Varanasi’s team is balancing making progress on its biomedical applications while exploring other avenues for its technology — including energy, manufacturing, and agriculture — to maximize its impact on the world.

“We think of this as a company with many companies within it because of all the different areas that it can impact. Liquid-solid interfaces are ubiquitous, viscous products are everywhere, and deploying this technology to solve difficult problems has been a dream,” Varanasi says. “It’s a great example of how MIT technology can be used for the benefit of humankind.”

© Image: Courtesy of Liquiglide

“[B]y creating a new surface in which we can infuse a liquid that is less viscous, we can now get the product to easily slide on surfaces,” Varanasi explains.

A new way to spot life-threatening infections in cancer patients

Chemotherapy and other treatments that take down cancer cells can also destroy patients’ immune cells. Every year, that leads tens of thousands of cancer patients with weakened immune systems to contract infections that can turn deadly if unmanaged.

Doctors must strike a balance between giving enough chemotherapy to eradicate cancer while not giving so much that the patient’s white blood cell count gets dangerously low, a condition known as neutropenia. It can also leave patients socially isolated in between rounds of chemotherapy. Currently, the only way for doctors to monitor their patients’ white blood cells is through blood tests.

Now Leuko is developing an at-home white blood cell monitor to give doctors a more complete view of their patients’ health remotely. Rather than drawing blood, the device uses light to look through the skin at the top of the fingernail, and artificial intelligence to analyze and detect when white blood cells reach dangerously low levels.

The technology was first conceived of by researchers at MIT in 2015. Over the next few years, they developed a prototype and conducted a small study to validate their approach. Today, Leuko’s devices have accurately detected low white blood cell counts in hundreds of cancer patients, all without drawing a single drop of blood.

“We expect this to bring a clear improvement in the way that patients are monitored and cared for in the outpatient setting,” says Leuko co-founder and CTO Ian Butterworth, a former research engineer in MIT’s Research Laboratory of Electronics. “I also think there’s a more personal side of this for patients. These people can feel vulnerable around other people, and they don't currently have much they can do. That means that if they want to see their grandkids or see family, they’re constantly wondering, ‘Am I at high risk?’”

The company has been working with the Food and Drug Administration (FDA) over the last four years to design studies confirming their device is accurate and easy to use by untrained patients. Later this year, they expect to begin a pivotal study that will be used to register for FDA approval.

Once the device becomes an established tool for patient monitoring, Leuko’s team believes it could also give doctors a new way to optimize cancer treatment.

“Some of the physicians that we have talked to are very excited because they think future versions of our product could be used to personalize the dose of chemotherapy given to each patient,” says Leuko co-founder and CEO Carlos Castro-Gonzalez, a former postdoc at MIT. “If a patient is not becoming neutropenic, that could be a sign that you could increase the dose. Then every treatment could be based on how each patient is individually reacting.”

Monitoring immune health

Leuko co-founders Ian Butterworth, Carlos Castro-Gonzalez, Aurélien Bourquard, and Alvaro Sanchez-Ferro came to MIT in 2013 as part of the Madrid-MIT M+Vision Consortium, which was a collaboration between MIT and Madrid and is now part of MIT linQ. The program brought biomedical researchers from around the world to MIT to work on translational projects with institutions around Boston and Madrid.

The program, which was originally run out of MIT’s Research Laboratory of Electronics, challenged members to tackle huge unmet needs in medicine and connected them with MIT faculty members from across the Institute to build solutions. Leuko’s founders also received support from MIT’s entrepreneurial ecosystem, including the Venture Mentoring Service, the Sandbox Innovation Fund, the Martin Trust Center for Entrepreneurship, and the Deshpande Center. After its MIT spinout, the company raised seed and series A financing rounds led by Good Growth Capital and HTH VC.

“I didn’t even realize that entrepreneurship was a career option for a PhD [like myself],” Castro-Gonzalez says. “I was thinking that after the fellowship I would apply for faculty positions. That was the career path I had in mind, so I was very excited about the focus at MIT on trying to translate science into products that people can benefit from.”

Leuko’s founders knew people with cancer stood to benefit the most from a noninvasive white blood cell monitor. Unless patients go to the hospital, they can currently monitor only their temperature from home. If they show signs of a fever, they’re advised to go to the emergency room immediately.

“These infections happen quite frequently,” Sanchez-Ferro says. “One in every six cancer patients undergoing chemotherapy will develop an infection where their white blood cells are critically low. Some of those infections unfortunately end in deaths for patients, which is particularly terrible because they’re due to the treatment rather than the disease. [Infections] also mean the chemotherapy gets interrupted, which increases negative clinical outcomes for patients.”

Leuko’s optical device works through imaging the capillaries, or small blood vessels, just above the fingernail, which are more visible and already used by doctors to assess other aspects of vascular health. The company’s portable device analyzes white blood cell activity to detect critically low levels for care teams.

In a study of 44 patients in 2019, Leuko’s team showed the approach was able to detect when white blood cell levels dropped below a critical threshold, with minimal false positives. The team has since developed a product that another, larger study showed unsupervised patients can use at home to get immune information to doctors.

“We work completely noninvasively, so you can perform white blood cell measurements at home and much more frequently than what’s possible today,” Bourquard says. “The key aspect of this is it allows doctors to identify patients whose immune systems become so weak they’re at high risk of infection. If doctors have that information, they can provide preventative treatment in the form of antibiotics and growth factors. Research estimates that would eliminate 50 percent of hospitalizations.”

Expanding applications

Leuko’s founders believe their device will help physicians make more informed care decisions for patients. They also believe the device holds promise for monitoring patient health across other conditions.

“The long-term vision for the company is making this available to other patient populations that can also benefit from increased monitoring of their immune system,” Castro-Gonzalez says. “That includes patients with multiple sclerosis, autoimmune diseases, organ transplants, and patients that are rushed into the emergency room.”

Leuko’s team even sees a future where their device could be used to monitor other biomarkers in the blood.

“We believe this could be a platform technology,” Castro-Gonzalez says. “We get these noninvasive videos of the blood flowing through the capillaries, so part of the vision for the company is measuring other parameters in the blood beyond white blood cells, including hemoglobin, red blood cells, and platelets. That’s all part of our roadmap for the future.”

© Credit: iStock

Leuko is developing an at-home white blood cell monitor to give doctors a more comprehensive view of their chemotherapy patients’ health.

Unlocking new science with devices that control electric power

Mo Mirvakili PhD ’17 was in the middle of an experiment as a postdoc at MIT when the Covid-19 pandemic hit. Grappling with restricted access to laboratory facilities, he decided to transform his bathroom into a makeshift lab. Arranging a piece of plywood over the bathtub to support power sources and measurement devices, he conducted a study that was later published in Science Robotics, one of the top journals in the field.

The adversity made for a good story, but the truth is that it didn’t take a global pandemic to force Mirvakili to build the equipment he needed to run his experiments. Even when working in some of the most well-funded labs in the world, he needed to piece together tools to bring his experiments to life.

“My journey reflects a broader truth: With determination and resourcefulness, many of us can achieve remarkable things,” he says. “There are so many people who don't have access to labs yet have great ideas. We need to make it easier for them to bring their experiments to life.”

That’s the idea behind Seron Electronics, a company Mirvakili founded to democratize scientific experimentation. Seron develops scientific equipment that precisely sources and measures power, characterizes materials, and integrates data into a customizable software platform.

By making sophisticated experiments more accessible, Seron aims to spur a new wave of innovation across fields as diverse as microelectronics, clean energy, optics, and biomedicine.

“Our goal is to become one of the leaders in providing accurate and affordable solutions for researchers,” Mirvakili says. “This vision extends beyond academia to include companies, governments, nonprofits, and even high school students. With Seron’s devices, anyone can conduct high-quality experiments, regardless of their background or resources.”

Feeling the need for constant power

Mirvakili earned his bachelor's and master's degrees in electrical engineering, followed by a PhD in mechanical engineering under MIT Professor Ian Hunter, which involved developing a class of high-performance thermal artificial muscles, including nylon artificial muscles. During that time, Mirvakili needed to precisely control the amount of energy that flowed through his experimental setups, but he couldn't find anything online that would solve his problem.

“I had access to all sorts of high-end equipment in our lab and the department,” Mirvakili recalls. “It’s all the latest, state-of-the-art stuff. But I had to bundle all these outside tools together for my work.”

After completing his PhD, Mirvakili joined Institute Professor Bob Langer’s lab as a postdoc, where he worked directly with Langer on a totally different problem in biomedical engineering. In Langer's famously prolific lab, he saw researchers struggling to control temperatures at the microscale for a device that was encapsulating drugs.

Mirvakili realized the researchers were ultimately struggling with the same set of problems: the need to precisely control electric current, voltage, and power. Those are also problems Mirvakili has seen in his more recent research into energy storage and solar cells. After speaking with researchers at conferences from around the world to confirm the need was widespread, he started Seron Electronics.

Seron calls the first version of its products the SE Programmable Power Platforms. The platforms allow users to source and measure precisely defined quantities of electrical voltage, current, power, and charge through a desktop application with minimal signal interference, or noise.

The equipment can be used to study things like semiconductor devices, actuators, and energy storage devices, or to precisely charge batteries without damaging their performance.

The equipment can also be used to study material performance because it can measure how materials react to precise electrical stimulation at a high resolution, and for quality control because it can test chips and flag problems.

The use cases are varied, but Seron’s overarching goal is to enable more innovation faster.

“Because our system is so intuitive, you reduce the time to get results,” Mirvakili says. “You can set it up in less than five minutes. It’s plug-and-play. Researchers tell us it speeds things up a lot.”

New frontiers

In a recent paper Mirvakili coauthored with MIT research affiliate Ehsan Haghighat, Seron’s equipment provided constant power to a thermal artificial muscle that integrated machine learning to give it a sort of muscle memory. In another study Mirvakili was not involved in, a nonprofit research organization used Seron’s equipment to identify a new, sustainable sensor material they are in the process of commercializing.

Many uses of the machines have come as a surprise to Seron’s team, and they expect to see a new wave of applications when they release a cheaper, portable version of Seron’s machines this summer. That could include the development of new bedside monitors for patients that can detect diseases, or remote sensors for field work.

Mirvakili thinks part of the beauty of Seron’s devices is that people in the company don’t have to dream up the experiments themselves. Instead, they can focus on providing powerful scientific tools and let the research community decide on the best ways to use them.

“Because of the size and the cost of this new device, it will really open up the possibilities for researchers," Mirvakili says. “Anyone who has a good idea should be able to turn that idea into reality with our equipment and solutions. In my mind, the applications are really unimaginable and endless.”

© Credit: Christine Daniloff, MIT; iStock

Seron Electronics makes scientific equipment that can precisely source and measure power, characterize materials, and chart all of that data in a customizable software platform for multiple industries including clean energy, robotics, biomedicine, and more.

New MIT.nano equipment to accelerate innovation in “tough tech” sectors

A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

“The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

“We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

Pushing the boundaries of innovation

Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

“This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

“In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

Scholvin predicts the equipment will lead to exponential growth in research opportunities.

“I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

“The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

Fulfilling a mission

MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

“This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

"We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.”

© Credit: Applied Materials

MIT.nano is receiving a new set of nanofabrication equipment, contributed by Applied Materials, capable of fabricating wafers — thin, round slices of semiconductor material — up to 200 millimeters in diameter, or 8 inches, a size widely used in industry.

MIT spinout Arnasi begins applying LiquiGlide no-stick technology to help patients

The no-stick technology invented by Professor Kripa Varanasi and David Smith SM ’11, initially commercialized as LiquiGlide in 2012, went viral for its uncanny ability to make materials that stick to their containers — think ketchup, cosmetics, and toothpaste — slide out with ease.

Now, the company that brought you Colgate no-stick toothpaste is moving into the medical space, and the applications could improve millions of lives. The company, which recently rebranded as the Arnasi Group, has developed an ambitious plan to launch three new biomedical products over the next four years.

The first of those products, called Revel, is a deodorizing lubricant designed for ostomy pouches, which are used by individuals to collect bodily waste after digestive system surgeries. Up to 1 million people rely on such pouches in the United States. Ostomy pouches must be emptied multiple times per day, and issues resulting from sticking or clogging can cause embarrassing, time-consuming situations for the people relying on them.

Arnasi’s deodorizing lubricant can prevent clogging and simplify the ostomy pouch cleaning process. Unlike other options available, one application of its lubricant works for the entire day, the Arnasi team says, and they designed a single unit dose that fits in your pocket for added convenience.

An ostomy pouch “significantly impacts a person’s lifestyle,” Varanasi says. “They need to keep it clean, and they need to use it at all times. We are solving a very important problem while helping people by giving their dignity and lifestyles back.”

Revel, Arnasi’s FDA-registered product, officially launched this month, and it has already received promising feedback from nurses and patients.

Margaret is a nurse who relies on an ostomy pouch herself and cares for patients who need them after receiving colostomies and ileostomies. She received samples of Revel at a recent conference and says it could dramatically improve both her and her patients’ lives.

“These pouches need to be emptied frequently, and sometimes that’s very difficult to do,” she says. “This particular product makes everything slide out without any problems at all, and it’s a wonderful improvement. It also lasts long enough to empty the pouch three to four times, which is great because you don’t have to carry a bunch of this stuff around.”

Margaret’s experience echoes feedback Arnasi’s team has heard from many others.

“When we showed it to the nurses, they were blown away with the product,” says Arnasi CEO Dan Salain. “They asked us to get this product out to the market as fast as we could, and so that’s what we’re doing.”

Arnasi’s next medical products will be used to prevent biofilm and bacterial infections caused by implants and catheters, and will also help people with cystic fibrosis.

“We want to create products that really help people,” Salain says. “Anything that’s implantable in the body, whether it’s a catheter, a hip, knee, or joint replacement, a breast implant, a bladder sling — those things lend themselves to our technology.”

From packages to patients

Varanasi initially developed Arnasi’s liquid-impregnated surface technology with Smith, Arnasi’s co-founder and current CTO, when Smith was a graduate student in Varanasi’s lab. The research was initially funded by the MIT Energy Initiative and the MIT Deshpande Center to work on solid-liquid interfaces with broad applications for energy, water, and more.

“There’s this fundamental friction constraint called the no-slip boundary condition between a liquid and a solid, so by creating a new surface in which we can infuse a liquid that is less viscous, we can now get the product to easily slide on surfaces,” Varanasi explains. “That aha moment meant we could get around a fundamental constraint in fluid dynamics.”

Still, sticky surfaces are everywhere, and the scientific co-founders had to decide where to apply their technology first. Shortly after the invention, Varanasi was at home trying to decide on the best application when he saw his wife across the kitchen table trying to get honey out of a bottle. It was another aha moment.

Soon after, Varanasi’s team entered the MIT $100K Entrepreneurship Competition. The competition — and the corresponding videos of ketchup and other materials sliding out their bottles with ease — created a media storm and a frenzy of attention.

“The press exploded,” Varanasi says. “For three months, my phone didn’t stop ringing. My group website crashed. There was a lot of market pull and in response, we founded the company.”

Arnasi, still operating as LiquiGlide, licensed the intellectual property from MIT’s Technology Licensing Office and eventually signed large deals with some of the world’s biggest consumer packaged goods companies, who used it to create products like fully recyclable toothpaste.

“There is so much waste just because we can't get all of the product, be it food, cosmetics, or medical products, out of containers,” Varanasi says. “Fifty billion-plus packages are sold every year, and 5 to 10 percent of product is left behind on average. So, you can imagine the CO2 footprint of the wasted product. And even though a lot of this is in recyclable packaging, they can’t be recycled because you need to wash out all the product. The water footprint of this is huge, not to mention the wasted product.”

While all of that was going on, Arnasi’s team was also looking into the biomedical space. For instance, Varanasi’s lab previously showed the technology could be used to prevent occlusion from blood clots and thrombosis and reduce biofilm formation, among other applications.

After studying the industry and speaking with patients and nurses, Arnasi realized a better lubricant for ostomy pouches could improve millions of people’s lives.

“Stool accumulates in these pouches outside of people’s bodies, and they need to empty it up to eight times a day,” explains Brienne Engel, Arnasi’s director of business development. “That process has a lot of challenges associated with it: It can be difficult to drain, leaving a lot of mass behind, it takes a long time to drain, so you can spend a long time in a restroom trying to clear out your pouch, and then there’s something called pancaking that can push the pouch off the [surgical opening], introducing issues like leakage, odor, and failure of the ostomy pouching system.”

Ostomy and beyond

Arnasi’s ostomy lubricant, Revel, is the first non-water-based solution on the market, and as-yet unpublished third-party testing has shown it allows for faster, more complete pouch drainage, along with other benefits.

“A lot of the existing brands treat their consumers like patients, but what we’ve found is they want to be treated like people and have a consumer experience,” Salain says. “The magic we saw with our toothpaste product was people got this amazing consumer experience out of it, and we wanted to create the same thing with Revel.”

Now Arnasi is planning to use its technology in medical products for skin infections, cystic fibrosis, and in implantable catheters and joint replacements. Arnasi’s team believes those last two use cases could prevent millions of deadly infections.

“When people are getting hemodialysis catheters, they have a 33 percent risk of developing infections, and those that do get those infections have a 25 percent chance of dying from them,” Engel says. “Taking our underlying technology and applying it to catheters, for example, imparts anti-biofilm properties and also prevent things like thrombosis, or blood clotting on the outside of these catheters, which is a problem in and of itself but also provides a space for bacteria to seed.”

Ultimately, Varanasi’s team is balancing making progress on its biomedical applications while exploring other avenues for its technology — including energy, manufacturing, and agriculture — to maximize its impact on the world.

“We think of this as a company with many companies within it because of all the different areas that it can impact. Liquid-solid interfaces are ubiquitous, viscous products are everywhere, and deploying this technology to solve difficult problems has been a dream,” Varanasi says. “It’s a great example of how MIT technology can be used for the benefit of humankind.”

© Image: Courtesy of Liquiglide

“[B]y creating a new surface in which we can infuse a liquid that is less viscous, we can now get the product to easily slide on surfaces,” Varanasi explains.

A new way to spot life-threatening infections in cancer patients

Chemotherapy and other treatments that take down cancer cells can also destroy patients’ immune cells. Every year, that leads tens of thousands of cancer patients with weakened immune systems to contract infections that can turn deadly if unmanaged.

Doctors must strike a balance between giving enough chemotherapy to eradicate cancer while not giving so much that the patient’s white blood cell count gets dangerously low, a condition known as neutropenia. It can also leave patients socially isolated in between rounds of chemotherapy. Currently, the only way for doctors to monitor their patients’ white blood cells is through blood tests.

Now Leuko is developing an at-home white blood cell monitor to give doctors a more complete view of their patients’ health remotely. Rather than drawing blood, the device uses light to look through the skin at the top of the fingernail, and artificial intelligence to analyze and detect when white blood cells reach dangerously low levels.

The technology was first conceived of by researchers at MIT in 2015. Over the next few years, they developed a prototype and conducted a small study to validate their approach. Today, Leuko’s devices have accurately detected low white blood cell counts in hundreds of cancer patients, all without drawing a single drop of blood.

“We expect this to bring a clear improvement in the way that patients are monitored and cared for in the outpatient setting,” says Leuko co-founder and CTO Ian Butterworth, a former research engineer in MIT’s Research Laboratory of Electronics. “I also think there’s a more personal side of this for patients. These people can feel vulnerable around other people, and they don't currently have much they can do. That means that if they want to see their grandkids or see family, they’re constantly wondering, ‘Am I at high risk?’”

The company has been working with the Food and Drug Administration (FDA) over the last four years to design studies confirming their device is accurate and easy to use by untrained patients. Later this year, they expect to begin a pivotal study that will be used to register for FDA approval.

Once the device becomes an established tool for patient monitoring, Leuko’s team believes it could also give doctors a new way to optimize cancer treatment.

“Some of the physicians that we have talked to are very excited because they think future versions of our product could be used to personalize the dose of chemotherapy given to each patient,” says Leuko co-founder and CEO Carlos Castro-Gonzalez, a former postdoc at MIT. “If a patient is not becoming neutropenic, that could be a sign that you could increase the dose. Then every treatment could be based on how each patient is individually reacting.”

Monitoring immune health

Leuko co-founders Ian Butterworth, Carlos Castro-Gonzalez, Aurélien Bourquard, and Alvaro Sanchez-Ferro came to MIT in 2013 as part of the Madrid-MIT M+Vision Consortium, which was a collaboration between MIT and Madrid and is now part of MIT linQ. The program brought biomedical researchers from around the world to MIT to work on translational projects with institutions around Boston and Madrid.

The program, which was originally run out of MIT’s Research Laboratory of Electronics, challenged members to tackle huge unmet needs in medicine and connected them with MIT faculty members from across the Institute to build solutions. Leuko’s founders also received support from MIT’s entrepreneurial ecosystem, including the Venture Mentoring Service, the Sandbox Innovation Fund, the Martin Trust Center for Entrepreneurship, and the Deshpande Center. After its MIT spinout, the company raised seed and series A financing rounds led by Good Growth Capital and HTH VC.

“I didn’t even realize that entrepreneurship was a career option for a PhD [like myself],” Castro-Gonzalez says. “I was thinking that after the fellowship I would apply for faculty positions. That was the career path I had in mind, so I was very excited about the focus at MIT on trying to translate science into products that people can benefit from.”

Leuko’s founders knew people with cancer stood to benefit the most from a noninvasive white blood cell monitor. Unless patients go to the hospital, they can currently monitor only their temperature from home. If they show signs of a fever, they’re advised to go to the emergency room immediately.

“These infections happen quite frequently,” Sanchez-Ferro says. “One in every six cancer patients undergoing chemotherapy will develop an infection where their white blood cells are critically low. Some of those infections unfortunately end in deaths for patients, which is particularly terrible because they’re due to the treatment rather than the disease. [Infections] also mean the chemotherapy gets interrupted, which increases negative clinical outcomes for patients.”

Leuko’s optical device works through imaging the capillaries, or small blood vessels, just above the fingernail, which are more visible and already used by doctors to assess other aspects of vascular health. The company’s portable device analyzes white blood cell activity to detect critically low levels for care teams.

In a study of 44 patients in 2019, Leuko’s team showed the approach was able to detect when white blood cell levels dropped below a critical threshold, with minimal false positives. The team has since developed a product that another, larger study showed unsupervised patients can use at home to get immune information to doctors.

“We work completely noninvasively, so you can perform white blood cell measurements at home and much more frequently than what’s possible today,” Bourquard says. “The key aspect of this is it allows doctors to identify patients whose immune systems become so weak they’re at high risk of infection. If doctors have that information, they can provide preventative treatment in the form of antibiotics and growth factors. Research estimates that would eliminate 50 percent of hospitalizations.”

Expanding applications

Leuko’s founders believe their device will help physicians make more informed care decisions for patients. They also believe the device holds promise for monitoring patient health across other conditions.

“The long-term vision for the company is making this available to other patient populations that can also benefit from increased monitoring of their immune system,” Castro-Gonzalez says. “That includes patients with multiple sclerosis, autoimmune diseases, organ transplants, and patients that are rushed into the emergency room.”

Leuko’s team even sees a future where their device could be used to monitor other biomarkers in the blood.

“We believe this could be a platform technology,” Castro-Gonzalez says. “We get these noninvasive videos of the blood flowing through the capillaries, so part of the vision for the company is measuring other parameters in the blood beyond white blood cells, including hemoglobin, red blood cells, and platelets. That’s all part of our roadmap for the future.”

© Credit: iStock

Leuko is developing an at-home white blood cell monitor to give doctors a more comprehensive view of their chemotherapy patients’ health.

Unlocking new science with devices that control electric power

Mo Mirvakili PhD ’17 was in the middle of an experiment as a postdoc at MIT when the Covid-19 pandemic hit. Grappling with restricted access to laboratory facilities, he decided to transform his bathroom into a makeshift lab. Arranging a piece of plywood over the bathtub to support power sources and measurement devices, he conducted a study that was later published in Science Robotics, one of the top journals in the field.

The adversity made for a good story, but the truth is that it didn’t take a global pandemic to force Mirvakili to build the equipment he needed to run his experiments. Even when working in some of the most well-funded labs in the world, he needed to piece together tools to bring his experiments to life.

“My journey reflects a broader truth: With determination and resourcefulness, many of us can achieve remarkable things,” he says. “There are so many people who don't have access to labs yet have great ideas. We need to make it easier for them to bring their experiments to life.”

That’s the idea behind Seron Electronics, a company Mirvakili founded to democratize scientific experimentation. Seron develops scientific equipment that precisely sources and measures power, characterizes materials, and integrates data into a customizable software platform.

By making sophisticated experiments more accessible, Seron aims to spur a new wave of innovation across fields as diverse as microelectronics, clean energy, optics, and biomedicine.

“Our goal is to become one of the leaders in providing accurate and affordable solutions for researchers,” Mirvakili says. “This vision extends beyond academia to include companies, governments, nonprofits, and even high school students. With Seron’s devices, anyone can conduct high-quality experiments, regardless of their background or resources.”

Feeling the need for constant power

Mirvakili earned his bachelor's and master's degrees in electrical engineering, followed by a PhD in mechanical engineering under MIT Professor Ian Hunter, which involved developing a class of high-performance thermal artificial muscles, including nylon artificial muscles. During that time, Mirvakili needed to precisely control the amount of energy that flowed through his experimental setups, but he couldn't find anything online that would solve his problem.

“I had access to all sorts of high-end equipment in our lab and the department,” Mirvakili recalls. “It’s all the latest, state-of-the-art stuff. But I had to bundle all these outside tools together for my work.”

After completing his PhD, Mirvakili joined Institute Professor Bob Langer’s lab as a postdoc, where he worked directly with Langer on a totally different problem in biomedical engineering. In Langer's famously prolific lab, he saw researchers struggling to control temperatures at the microscale for a device that was encapsulating drugs.

Mirvakili realized the researchers were ultimately struggling with the same set of problems: the need to precisely control electric current, voltage, and power. Those are also problems Mirvakili has seen in his more recent research into energy storage and solar cells. After speaking with researchers at conferences from around the world to confirm the need was widespread, he started Seron Electronics.

Seron calls the first version of its products the SE Programmable Power Platforms. The platforms allow users to source and measure precisely defined quantities of electrical voltage, current, power, and charge through a desktop application with minimal signal interference, or noise.

The equipment can be used to study things like semiconductor devices, actuators, and energy storage devices, or to precisely charge batteries without damaging their performance.

The equipment can also be used to study material performance because it can measure how materials react to precise electrical stimulation at a high resolution, and for quality control because it can test chips and flag problems.

The use cases are varied, but Seron’s overarching goal is to enable more innovation faster.

“Because our system is so intuitive, you reduce the time to get results,” Mirvakili says. “You can set it up in less than five minutes. It’s plug-and-play. Researchers tell us it speeds things up a lot.”

New frontiers

In a recent paper Mirvakili coauthored with MIT research affiliate Ehsan Haghighat, Seron’s equipment provided constant power to a thermal artificial muscle that integrated machine learning to give it a sort of muscle memory. In another study Mirvakili was not involved in, a nonprofit research organization used Seron’s equipment to identify a new, sustainable sensor material they are in the process of commercializing.

Many uses of the machines have come as a surprise to Seron’s team, and they expect to see a new wave of applications when they release a cheaper, portable version of Seron’s machines this summer. That could include the development of new bedside monitors for patients that can detect diseases, or remote sensors for field work.

Mirvakili thinks part of the beauty of Seron’s devices is that people in the company don’t have to dream up the experiments themselves. Instead, they can focus on providing powerful scientific tools and let the research community decide on the best ways to use them.

“Because of the size and the cost of this new device, it will really open up the possibilities for researchers," Mirvakili says. “Anyone who has a good idea should be able to turn that idea into reality with our equipment and solutions. In my mind, the applications are really unimaginable and endless.”

© Credit: Christine Daniloff, MIT; iStock

Seron Electronics makes scientific equipment that can precisely source and measure power, characterize materials, and chart all of that data in a customizable software platform for multiple industries including clean energy, robotics, biomedicine, and more.

New MIT.nano equipment to accelerate innovation in “tough tech” sectors

A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

“The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

“We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

Pushing the boundaries of innovation

Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

“This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

“In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

Scholvin predicts the equipment will lead to exponential growth in research opportunities.

“I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

“The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

Fulfilling a mission

MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

“This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

"We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.”

© Credit: Applied Materials

MIT.nano is receiving a new set of nanofabrication equipment, contributed by Applied Materials, capable of fabricating wafers — thin, round slices of semiconductor material — up to 200 millimeters in diameter, or 8 inches, a size widely used in industry.

MIT spinout Arnasi begins applying LiquiGlide no-stick technology to help patients

The no-stick technology invented by Professor Kripa Varanasi and David Smith SM ’11, initially commercialized as LiquiGlide in 2012, went viral for its uncanny ability to make materials that stick to their containers — think ketchup, cosmetics, and toothpaste — slide out with ease.

Now, the company that brought you Colgate no-stick toothpaste is moving into the medical space, and the applications could improve millions of lives. The company, which recently rebranded as the Arnasi Group, has developed an ambitious plan to launch three new biomedical products over the next four years.

The first of those products, called Revel, is a deodorizing lubricant designed for ostomy pouches, which are used by individuals to collect bodily waste after digestive system surgeries. Up to 1 million people rely on such pouches in the United States. Ostomy pouches must be emptied multiple times per day, and issues resulting from sticking or clogging can cause embarrassing, time-consuming situations for the people relying on them.

Arnasi’s deodorizing lubricant can prevent clogging and simplify the ostomy pouch cleaning process. Unlike other options available, one application of its lubricant works for the entire day, the Arnasi team says, and they designed a single unit dose that fits in your pocket for added convenience.

An ostomy pouch “significantly impacts a person’s lifestyle,” Varanasi says. “They need to keep it clean, and they need to use it at all times. We are solving a very important problem while helping people by giving their dignity and lifestyles back.”

Revel, Arnasi’s FDA-registered product, officially launched this month, and it has already received promising feedback from nurses and patients.

Margaret is a nurse who relies on an ostomy pouch herself and cares for patients who need them after receiving colostomies and ileostomies. She received samples of Revel at a recent conference and says it could dramatically improve both her and her patients’ lives.

“These pouches need to be emptied frequently, and sometimes that’s very difficult to do,” she says. “This particular product makes everything slide out without any problems at all, and it’s a wonderful improvement. It also lasts long enough to empty the pouch three to four times, which is great because you don’t have to carry a bunch of this stuff around.”

Margaret’s experience echoes feedback Arnasi’s team has heard from many others.

“When we showed it to the nurses, they were blown away with the product,” says Arnasi CEO Dan Salain. “They asked us to get this product out to the market as fast as we could, and so that’s what we’re doing.”

Arnasi’s next medical products will be used to prevent biofilm and bacterial infections caused by implants and catheters, and will also help people with cystic fibrosis.

“We want to create products that really help people,” Salain says. “Anything that’s implantable in the body, whether it’s a catheter, a hip, knee, or joint replacement, a breast implant, a bladder sling — those things lend themselves to our technology.”

From packages to patients

Varanasi initially developed Arnasi’s liquid-impregnated surface technology with Smith, Arnasi’s co-founder and current CTO, when Smith was a graduate student in Varanasi’s lab. The research was initially funded by the MIT Energy Initiative and the MIT Deshpande Center to work on solid-liquid interfaces with broad applications for energy, water, and more.

“There’s this fundamental friction constraint called the no-slip boundary condition between a liquid and a solid, so by creating a new surface in which we can infuse a liquid that is less viscous, we can now get the product to easily slide on surfaces,” Varanasi explains. “That aha moment meant we could get around a fundamental constraint in fluid dynamics.”

Still, sticky surfaces are everywhere, and the scientific co-founders had to decide where to apply their technology first. Shortly after the invention, Varanasi was at home trying to decide on the best application when he saw his wife across the kitchen table trying to get honey out of a bottle. It was another aha moment.

Soon after, Varanasi’s team entered the MIT $100K Entrepreneurship Competition. The competition — and the corresponding videos of ketchup and other materials sliding out their bottles with ease — created a media storm and a frenzy of attention.

“The press exploded,” Varanasi says. “For three months, my phone didn’t stop ringing. My group website crashed. There was a lot of market pull and in response, we founded the company.”

Arnasi, still operating as LiquiGlide, licensed the intellectual property from MIT’s Technology Licensing Office and eventually signed large deals with some of the world’s biggest consumer packaged goods companies, who used it to create products like fully recyclable toothpaste.

“There is so much waste just because we can't get all of the product, be it food, cosmetics, or medical products, out of containers,” Varanasi says. “Fifty billion-plus packages are sold every year, and 5 to 10 percent of product is left behind on average. So, you can imagine the CO2 footprint of the wasted product. And even though a lot of this is in recyclable packaging, they can’t be recycled because you need to wash out all the product. The water footprint of this is huge, not to mention the wasted product.”

While all of that was going on, Arnasi’s team was also looking into the biomedical space. For instance, Varanasi’s lab previously showed the technology could be used to prevent occlusion from blood clots and thrombosis and reduce biofilm formation, among other applications.

After studying the industry and speaking with patients and nurses, Arnasi realized a better lubricant for ostomy pouches could improve millions of people’s lives.

“Stool accumulates in these pouches outside of people’s bodies, and they need to empty it up to eight times a day,” explains Brienne Engel, Arnasi’s director of business development. “That process has a lot of challenges associated with it: It can be difficult to drain, leaving a lot of mass behind, it takes a long time to drain, so you can spend a long time in a restroom trying to clear out your pouch, and then there’s something called pancaking that can push the pouch off the [surgical opening], introducing issues like leakage, odor, and failure of the ostomy pouching system.”

Ostomy and beyond

Arnasi’s ostomy lubricant, Revel, is the first non-water-based solution on the market, and as-yet unpublished third-party testing has shown it allows for faster, more complete pouch drainage, along with other benefits.

“A lot of the existing brands treat their consumers like patients, but what we’ve found is they want to be treated like people and have a consumer experience,” Salain says. “The magic we saw with our toothpaste product was people got this amazing consumer experience out of it, and we wanted to create the same thing with Revel.”

Now Arnasi is planning to use its technology in medical products for skin infections, cystic fibrosis, and in implantable catheters and joint replacements. Arnasi’s team believes those last two use cases could prevent millions of deadly infections.

“When people are getting hemodialysis catheters, they have a 33 percent risk of developing infections, and those that do get those infections have a 25 percent chance of dying from them,” Engel says. “Taking our underlying technology and applying it to catheters, for example, imparts anti-biofilm properties and also prevent things like thrombosis, or blood clotting on the outside of these catheters, which is a problem in and of itself but also provides a space for bacteria to seed.”

Ultimately, Varanasi’s team is balancing making progress on its biomedical applications while exploring other avenues for its technology — including energy, manufacturing, and agriculture — to maximize its impact on the world.

“We think of this as a company with many companies within it because of all the different areas that it can impact. Liquid-solid interfaces are ubiquitous, viscous products are everywhere, and deploying this technology to solve difficult problems has been a dream,” Varanasi says. “It’s a great example of how MIT technology can be used for the benefit of humankind.”

© Image: Courtesy of Liquiglide

“[B]y creating a new surface in which we can infuse a liquid that is less viscous, we can now get the product to easily slide on surfaces,” Varanasi explains.

A new way to spot life-threatening infections in cancer patients

Chemotherapy and other treatments that take down cancer cells can also destroy patients’ immune cells. Every year, that leads tens of thousands of cancer patients with weakened immune systems to contract infections that can turn deadly if unmanaged.

Doctors must strike a balance between giving enough chemotherapy to eradicate cancer while not giving so much that the patient’s white blood cell count gets dangerously low, a condition known as neutropenia. It can also leave patients socially isolated in between rounds of chemotherapy. Currently, the only way for doctors to monitor their patients’ white blood cells is through blood tests.

Now Leuko is developing an at-home white blood cell monitor to give doctors a more complete view of their patients’ health remotely. Rather than drawing blood, the device uses light to look through the skin at the top of the fingernail, and artificial intelligence to analyze and detect when white blood cells reach dangerously low levels.

The technology was first conceived of by researchers at MIT in 2015. Over the next few years, they developed a prototype and conducted a small study to validate their approach. Today, Leuko’s devices have accurately detected low white blood cell counts in hundreds of cancer patients, all without drawing a single drop of blood.

“We expect this to bring a clear improvement in the way that patients are monitored and cared for in the outpatient setting,” says Leuko co-founder and CTO Ian Butterworth, a former research engineer in MIT’s Research Laboratory of Electronics. “I also think there’s a more personal side of this for patients. These people can feel vulnerable around other people, and they don't currently have much they can do. That means that if they want to see their grandkids or see family, they’re constantly wondering, ‘Am I at high risk?’”

The company has been working with the Food and Drug Administration (FDA) over the last four years to design studies confirming their device is accurate and easy to use by untrained patients. Later this year, they expect to begin a pivotal study that will be used to register for FDA approval.

Once the device becomes an established tool for patient monitoring, Leuko’s team believes it could also give doctors a new way to optimize cancer treatment.

“Some of the physicians that we have talked to are very excited because they think future versions of our product could be used to personalize the dose of chemotherapy given to each patient,” says Leuko co-founder and CEO Carlos Castro-Gonzalez, a former postdoc at MIT. “If a patient is not becoming neutropenic, that could be a sign that you could increase the dose. Then every treatment could be based on how each patient is individually reacting.”

Monitoring immune health

Leuko co-founders Ian Butterworth, Carlos Castro-Gonzalez, Aurélien Bourquard, and Alvaro Sanchez-Ferro came to MIT in 2013 as part of the Madrid-MIT M+Vision Consortium, which was a collaboration between MIT and Madrid and is now part of MIT linQ. The program brought biomedical researchers from around the world to MIT to work on translational projects with institutions around Boston and Madrid.

The program, which was originally run out of MIT’s Research Laboratory of Electronics, challenged members to tackle huge unmet needs in medicine and connected them with MIT faculty members from across the Institute to build solutions. Leuko’s founders also received support from MIT’s entrepreneurial ecosystem, including the Venture Mentoring Service, the Sandbox Innovation Fund, the Martin Trust Center for Entrepreneurship, and the Deshpande Center. After its MIT spinout, the company raised seed and series A financing rounds led by Good Growth Capital and HTH VC.

“I didn’t even realize that entrepreneurship was a career option for a PhD [like myself],” Castro-Gonzalez says. “I was thinking that after the fellowship I would apply for faculty positions. That was the career path I had in mind, so I was very excited about the focus at MIT on trying to translate science into products that people can benefit from.”

Leuko’s founders knew people with cancer stood to benefit the most from a noninvasive white blood cell monitor. Unless patients go to the hospital, they can currently monitor only their temperature from home. If they show signs of a fever, they’re advised to go to the emergency room immediately.

“These infections happen quite frequently,” Sanchez-Ferro says. “One in every six cancer patients undergoing chemotherapy will develop an infection where their white blood cells are critically low. Some of those infections unfortunately end in deaths for patients, which is particularly terrible because they’re due to the treatment rather than the disease. [Infections] also mean the chemotherapy gets interrupted, which increases negative clinical outcomes for patients.”

Leuko’s optical device works through imaging the capillaries, or small blood vessels, just above the fingernail, which are more visible and already used by doctors to assess other aspects of vascular health. The company’s portable device analyzes white blood cell activity to detect critically low levels for care teams.

In a study of 44 patients in 2019, Leuko’s team showed the approach was able to detect when white blood cell levels dropped below a critical threshold, with minimal false positives. The team has since developed a product that another, larger study showed unsupervised patients can use at home to get immune information to doctors.

“We work completely noninvasively, so you can perform white blood cell measurements at home and much more frequently than what’s possible today,” Bourquard says. “The key aspect of this is it allows doctors to identify patients whose immune systems become so weak they’re at high risk of infection. If doctors have that information, they can provide preventative treatment in the form of antibiotics and growth factors. Research estimates that would eliminate 50 percent of hospitalizations.”

Expanding applications

Leuko’s founders believe their device will help physicians make more informed care decisions for patients. They also believe the device holds promise for monitoring patient health across other conditions.

“The long-term vision for the company is making this available to other patient populations that can also benefit from increased monitoring of their immune system,” Castro-Gonzalez says. “That includes patients with multiple sclerosis, autoimmune diseases, organ transplants, and patients that are rushed into the emergency room.”

Leuko’s team even sees a future where their device could be used to monitor other biomarkers in the blood.

“We believe this could be a platform technology,” Castro-Gonzalez says. “We get these noninvasive videos of the blood flowing through the capillaries, so part of the vision for the company is measuring other parameters in the blood beyond white blood cells, including hemoglobin, red blood cells, and platelets. That’s all part of our roadmap for the future.”

© Credit: iStock

Leuko is developing an at-home white blood cell monitor to give doctors a more comprehensive view of their chemotherapy patients’ health.

Unlocking new science with devices that control electric power

Mo Mirvakili PhD ’17 was in the middle of an experiment as a postdoc at MIT when the Covid-19 pandemic hit. Grappling with restricted access to laboratory facilities, he decided to transform his bathroom into a makeshift lab. Arranging a piece of plywood over the bathtub to support power sources and measurement devices, he conducted a study that was later published in Science Robotics, one of the top journals in the field.

The adversity made for a good story, but the truth is that it didn’t take a global pandemic to force Mirvakili to build the equipment he needed to run his experiments. Even when working in some of the most well-funded labs in the world, he needed to piece together tools to bring his experiments to life.

“My journey reflects a broader truth: With determination and resourcefulness, many of us can achieve remarkable things,” he says. “There are so many people who don't have access to labs yet have great ideas. We need to make it easier for them to bring their experiments to life.”

That’s the idea behind Seron Electronics, a company Mirvakili founded to democratize scientific experimentation. Seron develops scientific equipment that precisely sources and measures power, characterizes materials, and integrates data into a customizable software platform.

By making sophisticated experiments more accessible, Seron aims to spur a new wave of innovation across fields as diverse as microelectronics, clean energy, optics, and biomedicine.

“Our goal is to become one of the leaders in providing accurate and affordable solutions for researchers,” Mirvakili says. “This vision extends beyond academia to include companies, governments, nonprofits, and even high school students. With Seron’s devices, anyone can conduct high-quality experiments, regardless of their background or resources.”

Feeling the need for constant power

Mirvakili earned his bachelor's and master's degrees in electrical engineering, followed by a PhD in mechanical engineering under MIT Professor Ian Hunter, which involved developing a class of high-performance thermal artificial muscles, including nylon artificial muscles. During that time, Mirvakili needed to precisely control the amount of energy that flowed through his experimental setups, but he couldn't find anything online that would solve his problem.

“I had access to all sorts of high-end equipment in our lab and the department,” Mirvakili recalls. “It’s all the latest, state-of-the-art stuff. But I had to bundle all these outside tools together for my work.”

After completing his PhD, Mirvakili joined Institute Professor Bob Langer’s lab as a postdoc, where he worked directly with Langer on a totally different problem in biomedical engineering. In Langer's famously prolific lab, he saw researchers struggling to control temperatures at the microscale for a device that was encapsulating drugs.

Mirvakili realized the researchers were ultimately struggling with the same set of problems: the need to precisely control electric current, voltage, and power. Those are also problems Mirvakili has seen in his more recent research into energy storage and solar cells. After speaking with researchers at conferences from around the world to confirm the need was widespread, he started Seron Electronics.

Seron calls the first version of its products the SE Programmable Power Platforms. The platforms allow users to source and measure precisely defined quantities of electrical voltage, current, power, and charge through a desktop application with minimal signal interference, or noise.

The equipment can be used to study things like semiconductor devices, actuators, and energy storage devices, or to precisely charge batteries without damaging their performance.

The equipment can also be used to study material performance because it can measure how materials react to precise electrical stimulation at a high resolution, and for quality control because it can test chips and flag problems.

The use cases are varied, but Seron’s overarching goal is to enable more innovation faster.

“Because our system is so intuitive, you reduce the time to get results,” Mirvakili says. “You can set it up in less than five minutes. It’s plug-and-play. Researchers tell us it speeds things up a lot.”

New frontiers

In a recent paper Mirvakili coauthored with MIT research affiliate Ehsan Haghighat, Seron’s equipment provided constant power to a thermal artificial muscle that integrated machine learning to give it a sort of muscle memory. In another study Mirvakili was not involved in, a nonprofit research organization used Seron’s equipment to identify a new, sustainable sensor material they are in the process of commercializing.

Many uses of the machines have come as a surprise to Seron’s team, and they expect to see a new wave of applications when they release a cheaper, portable version of Seron’s machines this summer. That could include the development of new bedside monitors for patients that can detect diseases, or remote sensors for field work.

Mirvakili thinks part of the beauty of Seron’s devices is that people in the company don’t have to dream up the experiments themselves. Instead, they can focus on providing powerful scientific tools and let the research community decide on the best ways to use them.

“Because of the size and the cost of this new device, it will really open up the possibilities for researchers," Mirvakili says. “Anyone who has a good idea should be able to turn that idea into reality with our equipment and solutions. In my mind, the applications are really unimaginable and endless.”

© Credit: Christine Daniloff, MIT; iStock

Seron Electronics makes scientific equipment that can precisely source and measure power, characterize materials, and chart all of that data in a customizable software platform for multiple industries including clean energy, robotics, biomedicine, and more.

New MIT.nano equipment to accelerate innovation in “tough tech” sectors

A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

“The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

“We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

Pushing the boundaries of innovation

Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

“This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

“In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

Scholvin predicts the equipment will lead to exponential growth in research opportunities.

“I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

“The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

Fulfilling a mission

MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

“This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

"We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.”

© Credit: Applied Materials

MIT.nano is receiving a new set of nanofabrication equipment, contributed by Applied Materials, capable of fabricating wafers — thin, round slices of semiconductor material — up to 200 millimeters in diameter, or 8 inches, a size widely used in industry.

A new way to spot life-threatening infections in cancer patients

Chemotherapy and other treatments that take down cancer cells can also destroy patients’ immune cells. Every year, that leads tens of thousands of cancer patients with weakened immune systems to contract infections that can turn deadly if unmanaged.

Doctors must strike a balance between giving enough chemotherapy to eradicate cancer while not giving so much that the patient’s white blood cell count gets dangerously low, a condition known as neutropenia. It can also leave patients socially isolated in between rounds of chemotherapy. Currently, the only way for doctors to monitor their patients’ white blood cells is through blood tests.

Now Leuko is developing an at-home white blood cell monitor to give doctors a more complete view of their patients’ health remotely. Rather than drawing blood, the device uses light to look through the skin at the top of the fingernail, and artificial intelligence to analyze and detect when white blood cells reach dangerously low levels.

The technology was first conceived of by researchers at MIT in 2015. Over the next few years, they developed a prototype and conducted a small study to validate their approach. Today, Leuko’s devices have accurately detected low white blood cell counts in hundreds of cancer patients, all without drawing a single drop of blood.

“We expect this to bring a clear improvement in the way that patients are monitored and cared for in the outpatient setting,” says Leuko co-founder and CTO Ian Butterworth, a former research engineer in MIT’s Research Laboratory of Electronics. “I also think there’s a more personal side of this for patients. These people can feel vulnerable around other people, and they don't currently have much they can do. That means that if they want to see their grandkids or see family, they’re constantly wondering, ‘Am I at high risk?’”

The company has been working with the Food and Drug Administration (FDA) over the last four years to design studies confirming their device is accurate and easy to use by untrained patients. Later this year, they expect to begin a pivotal study that will be used to register for FDA approval.

Once the device becomes an established tool for patient monitoring, Leuko’s team believes it could also give doctors a new way to optimize cancer treatment.

“Some of the physicians that we have talked to are very excited because they think future versions of our product could be used to personalize the dose of chemotherapy given to each patient,” says Leuko co-founder and CEO Carlos Castro-Gonzalez, a former postdoc at MIT. “If a patient is not becoming neutropenic, that could be a sign that you could increase the dose. Then every treatment could be based on how each patient is individually reacting.”

Monitoring immune health

Leuko co-founders Ian Butterworth, Carlos Castro-Gonzalez, Aurélien Bourquard, and Alvaro Sanchez-Ferro came to MIT in 2013 as part of the Madrid-MIT M+Vision Consortium, which was a collaboration between MIT and Madrid and is now part of MIT linQ. The program brought biomedical researchers from around the world to MIT to work on translational projects with institutions around Boston and Madrid.

The program, which was originally run out of MIT’s Research Laboratory of Electronics, challenged members to tackle huge unmet needs in medicine and connected them with MIT faculty members from across the Institute to build solutions. Leuko’s founders also received support from MIT’s entrepreneurial ecosystem, including the Venture Mentoring Service, the Sandbox Innovation Fund, the Martin Trust Center for Entrepreneurship, and the Deshpande Center. After its MIT spinout, the company raised seed and series A financing rounds led by Good Growth Capital and HTH VC.

“I didn’t even realize that entrepreneurship was a career option for a PhD [like myself],” Castro-Gonzalez says. “I was thinking that after the fellowship I would apply for faculty positions. That was the career path I had in mind, so I was very excited about the focus at MIT on trying to translate science into products that people can benefit from.”

Leuko’s founders knew people with cancer stood to benefit the most from a noninvasive white blood cell monitor. Unless patients go to the hospital, they can currently monitor only their temperature from home. If they show signs of a fever, they’re advised to go to the emergency room immediately.

“These infections happen quite frequently,” Sanchez-Ferro says. “One in every six cancer patients undergoing chemotherapy will develop an infection where their white blood cells are critically low. Some of those infections unfortunately end in deaths for patients, which is particularly terrible because they’re due to the treatment rather than the disease. [Infections] also mean the chemotherapy gets interrupted, which increases negative clinical outcomes for patients.”

Leuko’s optical device works through imaging the capillaries, or small blood vessels, just above the fingernail, which are more visible and already used by doctors to assess other aspects of vascular health. The company’s portable device analyzes white blood cell activity to detect critically low levels for care teams.

In a study of 44 patients in 2019, Leuko’s team showed the approach was able to detect when white blood cell levels dropped below a critical threshold, with minimal false positives. The team has since developed a product that another, larger study showed unsupervised patients can use at home to get immune information to doctors.

“We work completely noninvasively, so you can perform white blood cell measurements at home and much more frequently than what’s possible today,” Bourquard says. “The key aspect of this is it allows doctors to identify patients whose immune systems become so weak they’re at high risk of infection. If doctors have that information, they can provide preventative treatment in the form of antibiotics and growth factors. Research estimates that would eliminate 50 percent of hospitalizations.”

Expanding applications

Leuko’s founders believe their device will help physicians make more informed care decisions for patients. They also believe the device holds promise for monitoring patient health across other conditions.

“The long-term vision for the company is making this available to other patient populations that can also benefit from increased monitoring of their immune system,” Castro-Gonzalez says. “That includes patients with multiple sclerosis, autoimmune diseases, organ transplants, and patients that are rushed into the emergency room.”

Leuko’s team even sees a future where their device could be used to monitor other biomarkers in the blood.

“We believe this could be a platform technology,” Castro-Gonzalez says. “We get these noninvasive videos of the blood flowing through the capillaries, so part of the vision for the company is measuring other parameters in the blood beyond white blood cells, including hemoglobin, red blood cells, and platelets. That’s all part of our roadmap for the future.”

© Credit: iStock

Leuko is developing an at-home white blood cell monitor to give doctors a more comprehensive view of their chemotherapy patients’ health.

Unlocking new science with devices that control electric power

Mo Mirvakili PhD ’17 was in the middle of an experiment as a postdoc at MIT when the Covid-19 pandemic hit. Grappling with restricted access to laboratory facilities, he decided to transform his bathroom into a makeshift lab. Arranging a piece of plywood over the bathtub to support power sources and measurement devices, he conducted a study that was later published in Science Robotics, one of the top journals in the field.

The adversity made for a good story, but the truth is that it didn’t take a global pandemic to force Mirvakili to build the equipment he needed to run his experiments. Even when working in some of the most well-funded labs in the world, he needed to piece together tools to bring his experiments to life.

“My journey reflects a broader truth: With determination and resourcefulness, many of us can achieve remarkable things,” he says. “There are so many people who don't have access to labs yet have great ideas. We need to make it easier for them to bring their experiments to life.”

That’s the idea behind Seron Electronics, a company Mirvakili founded to democratize scientific experimentation. Seron develops scientific equipment that precisely sources and measures power, characterizes materials, and integrates data into a customizable software platform.

By making sophisticated experiments more accessible, Seron aims to spur a new wave of innovation across fields as diverse as microelectronics, clean energy, optics, and biomedicine.

“Our goal is to become one of the leaders in providing accurate and affordable solutions for researchers,” Mirvakili says. “This vision extends beyond academia to include companies, governments, nonprofits, and even high school students. With Seron’s devices, anyone can conduct high-quality experiments, regardless of their background or resources.”

Feeling the need for constant power

Mirvakili earned his bachelor's and master's degrees in electrical engineering, followed by a PhD in mechanical engineering under MIT Professor Ian Hunter, which involved developing a class of high-performance thermal artificial muscles, including nylon artificial muscles. During that time, Mirvakili needed to precisely control the amount of energy that flowed through his experimental setups, but he couldn't find anything online that would solve his problem.

“I had access to all sorts of high-end equipment in our lab and the department,” Mirvakili recalls. “It’s all the latest, state-of-the-art stuff. But I had to bundle all these outside tools together for my work.”

After completing his PhD, Mirvakili joined Institute Professor Bob Langer’s lab as a postdoc, where he worked directly with Langer on a totally different problem in biomedical engineering. In Langer's famously prolific lab, he saw researchers struggling to control temperatures at the microscale for a device that was encapsulating drugs.

Mirvakili realized the researchers were ultimately struggling with the same set of problems: the need to precisely control electric current, voltage, and power. Those are also problems Mirvakili has seen in his more recent research into energy storage and solar cells. After speaking with researchers at conferences from around the world to confirm the need was widespread, he started Seron Electronics.

Seron calls the first version of its products the SE Programmable Power Platforms. The platforms allow users to source and measure precisely defined quantities of electrical voltage, current, power, and charge through a desktop application with minimal signal interference, or noise.

The equipment can be used to study things like semiconductor devices, actuators, and energy storage devices, or to precisely charge batteries without damaging their performance.

The equipment can also be used to study material performance because it can measure how materials react to precise electrical stimulation at a high resolution, and for quality control because it can test chips and flag problems.

The use cases are varied, but Seron’s overarching goal is to enable more innovation faster.

“Because our system is so intuitive, you reduce the time to get results,” Mirvakili says. “You can set it up in less than five minutes. It’s plug-and-play. Researchers tell us it speeds things up a lot.”

New frontiers

In a recent paper Mirvakili coauthored with MIT research affiliate Ehsan Haghighat, Seron’s equipment provided constant power to a thermal artificial muscle that integrated machine learning to give it a sort of muscle memory. In another study Mirvakili was not involved in, a nonprofit research organization used Seron’s equipment to identify a new, sustainable sensor material they are in the process of commercializing.

Many uses of the machines have come as a surprise to Seron’s team, and they expect to see a new wave of applications when they release a cheaper, portable version of Seron’s machines this summer. That could include the development of new bedside monitors for patients that can detect diseases, or remote sensors for field work.

Mirvakili thinks part of the beauty of Seron’s devices is that people in the company don’t have to dream up the experiments themselves. Instead, they can focus on providing powerful scientific tools and let the research community decide on the best ways to use them.

“Because of the size and the cost of this new device, it will really open up the possibilities for researchers," Mirvakili says. “Anyone who has a good idea should be able to turn that idea into reality with our equipment and solutions. In my mind, the applications are really unimaginable and endless.”

© Credit: Christine Daniloff, MIT; iStock

Seron Electronics makes scientific equipment that can precisely source and measure power, characterize materials, and chart all of that data in a customizable software platform for multiple industries including clean energy, robotics, biomedicine, and more.

New MIT.nano equipment to accelerate innovation in “tough tech” sectors

A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

“The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

“We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

Pushing the boundaries of innovation

Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

“This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

“In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

Scholvin predicts the equipment will lead to exponential growth in research opportunities.

“I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

“The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

Fulfilling a mission

MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

“This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

"We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.”

© Credit: Applied Materials

MIT.nano is receiving a new set of nanofabrication equipment, contributed by Applied Materials, capable of fabricating wafers — thin, round slices of semiconductor material — up to 200 millimeters in diameter, or 8 inches, a size widely used in industry.

Unlocking new science with devices that control electric power

Mo Mirvakili PhD ’17 was in the middle of an experiment as a postdoc at MIT when the Covid-19 pandemic hit. Grappling with restricted access to laboratory facilities, he decided to transform his bathroom into a makeshift lab. Arranging a piece of plywood over the bathtub to support power sources and measurement devices, he conducted a study that was later published in Science Robotics, one of the top journals in the field.

The adversity made for a good story, but the truth is that it didn’t take a global pandemic to force Mirvakili to build the equipment he needed to run his experiments. Even when working in some of the most well-funded labs in the world, he needed to piece together tools to bring his experiments to life.

“My journey reflects a broader truth: With determination and resourcefulness, many of us can achieve remarkable things,” he says. “There are so many people who don't have access to labs yet have great ideas. We need to make it easier for them to bring their experiments to life.”

That’s the idea behind Seron Electronics, a company Mirvakili founded to democratize scientific experimentation. Seron develops scientific equipment that precisely sources and measures power, characterizes materials, and integrates data into a customizable software platform.

By making sophisticated experiments more accessible, Seron aims to spur a new wave of innovation across fields as diverse as microelectronics, clean energy, optics, and biomedicine.

“Our goal is to become one of the leaders in providing accurate and affordable solutions for researchers,” Mirvakili says. “This vision extends beyond academia to include companies, governments, nonprofits, and even high school students. With Seron’s devices, anyone can conduct high-quality experiments, regardless of their background or resources.”

Feeling the need for constant power

Mirvakili earned his bachelor's and master's degrees in electrical engineering, followed by a PhD in mechanical engineering under MIT Professor Ian Hunter, which involved developing a class of high-performance thermal artificial muscles, including nylon artificial muscles. During that time, Mirvakili needed to precisely control the amount of energy that flowed through his experimental setups, but he couldn't find anything online that would solve his problem.

“I had access to all sorts of high-end equipment in our lab and the department,” Mirvakili recalls. “It’s all the latest, state-of-the-art stuff. But I had to bundle all these outside tools together for my work.”

After completing his PhD, Mirvakili joined Institute Professor Bob Langer’s lab as a postdoc, where he worked directly with Langer on a totally different problem in biomedical engineering. In Langer's famously prolific lab, he saw researchers struggling to control temperatures at the microscale for a device that was encapsulating drugs.

Mirvakili realized the researchers were ultimately struggling with the same set of problems: the need to precisely control electric current, voltage, and power. Those are also problems Mirvakili has seen in his more recent research into energy storage and solar cells. After speaking with researchers at conferences from around the world to confirm the need was widespread, he started Seron Electronics.

Seron calls the first version of its products the SE Programmable Power Platforms. The platforms allow users to source and measure precisely defined quantities of electrical voltage, current, power, and charge through a desktop application with minimal signal interference, or noise.

The equipment can be used to study things like semiconductor devices, actuators, and energy storage devices, or to precisely charge batteries without damaging their performance.

The equipment can also be used to study material performance because it can measure how materials react to precise electrical stimulation at a high resolution, and for quality control because it can test chips and flag problems.

The use cases are varied, but Seron’s overarching goal is to enable more innovation faster.

“Because our system is so intuitive, you reduce the time to get results,” Mirvakili says. “You can set it up in less than five minutes. It’s plug-and-play. Researchers tell us it speeds things up a lot.”

New frontiers

In a recent paper Mirvakili coauthored with MIT research affiliate Ehsan Haghighat, Seron’s equipment provided constant power to a thermal artificial muscle that integrated machine learning to give it a sort of muscle memory. In another study Mirvakili was not involved in, a nonprofit research organization used Seron’s equipment to identify a new, sustainable sensor material they are in the process of commercializing.

Many uses of the machines have come as a surprise to Seron’s team, and they expect to see a new wave of applications when they release a cheaper, portable version of Seron’s machines this summer. That could include the development of new bedside monitors for patients that can detect diseases, or remote sensors for field work.

Mirvakili thinks part of the beauty of Seron’s devices is that people in the company don’t have to dream up the experiments themselves. Instead, they can focus on providing powerful scientific tools and let the research community decide on the best ways to use them.

“Because of the size and the cost of this new device, it will really open up the possibilities for researchers," Mirvakili says. “Anyone who has a good idea should be able to turn that idea into reality with our equipment and solutions. In my mind, the applications are really unimaginable and endless.”

© Credit: Christine Daniloff, MIT; iStock

Seron Electronics makes scientific equipment that can precisely source and measure power, characterize materials, and chart all of that data in a customizable software platform for multiple industries including clean energy, robotics, biomedicine, and more.

New MIT.nano equipment to accelerate innovation in “tough tech” sectors

A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

“The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

“We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

Pushing the boundaries of innovation

Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

“This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

“In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

Scholvin predicts the equipment will lead to exponential growth in research opportunities.

“I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

“The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

Fulfilling a mission

MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

“This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

"We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.”

© Credit: Applied Materials

MIT.nano is receiving a new set of nanofabrication equipment, contributed by Applied Materials, capable of fabricating wafers — thin, round slices of semiconductor material — up to 200 millimeters in diameter, or 8 inches, a size widely used in industry.

Unlocking new science with devices that control electric power

Mo Mirvakili PhD ’17 was in the middle of an experiment as a postdoc at MIT when the Covid-19 pandemic hit. Grappling with restricted access to laboratory facilities, he decided to transform his bathroom into a makeshift lab. Arranging a piece of plywood over the bathtub to support power sources and measurement devices, he conducted a study that was later published in Science Robotics, one of the top journals in the field.

The adversity made for a good story, but the truth is that it didn’t take a global pandemic to force Mirvakili to build the equipment he needed to run his experiments. Even when working in some of the most well-funded labs in the world, he needed to piece together tools to bring his experiments to life.

“My journey reflects a broader truth: With determination and resourcefulness, many of us can achieve remarkable things,” he says. “There are so many people who don't have access to labs yet have great ideas. We need to make it easier for them to bring their experiments to life.”

That’s the idea behind Seron Electronics, a company Mirvakili founded to democratize scientific experimentation. Seron develops scientific equipment that precisely sources and measures power, characterizes materials, and integrates data into a customizable software platform.

By making sophisticated experiments more accessible, Seron aims to spur a new wave of innovation across fields as diverse as microelectronics, clean energy, optics, and biomedicine.

“Our goal is to become one of the leaders in providing accurate and affordable solutions for researchers,” Mirvakili says. “This vision extends beyond academia to include companies, governments, nonprofits, and even high school students. With Seron’s devices, anyone can conduct high-quality experiments, regardless of their background or resources.”

Feeling the need for constant power

Mirvakili earned his bachelor's and master's degrees in electrical engineering, followed by a PhD in mechanical engineering under MIT Professor Ian Hunter, which involved developing a class of high-performance thermal artificial muscles, including nylon artificial muscles. During that time, Mirvakili needed to precisely control the amount of energy that flowed through his experimental setups, but he couldn't find anything online that would solve his problem.

“I had access to all sorts of high-end equipment in our lab and the department,” Mirvakili recalls. “It’s all the latest, state-of-the-art stuff. But I had to bundle all these outside tools together for my work.”

After completing his PhD, Mirvakili joined Institute Professor Bob Langer’s lab as a postdoc, where he worked directly with Langer on a totally different problem in biomedical engineering. In Langer's famously prolific lab, he saw researchers struggling to control temperatures at the microscale for a device that was encapsulating drugs.

Mirvakili realized the researchers were ultimately struggling with the same set of problems: the need to precisely control electric current, voltage, and power. Those are also problems Mirvakili has seen in his more recent research into energy storage and solar cells. After speaking with researchers at conferences from around the world to confirm the need was widespread, he started Seron Electronics.

Seron calls the first version of its products the SE Programmable Power Platforms. The platforms allow users to source and measure precisely defined quantities of electrical voltage, current, power, and charge through a desktop application with minimal signal interference, or noise.

The equipment can be used to study things like semiconductor devices, actuators, and energy storage devices, or to precisely charge batteries without damaging their performance.

The equipment can also be used to study material performance because it can measure how materials react to precise electrical stimulation at a high resolution, and for quality control because it can test chips and flag problems.

The use cases are varied, but Seron’s overarching goal is to enable more innovation faster.

“Because our system is so intuitive, you reduce the time to get results,” Mirvakili says. “You can set it up in less than five minutes. It’s plug-and-play. Researchers tell us it speeds things up a lot.”

New frontiers

In a recent paper Mirvakili coauthored with MIT research affiliate Ehsan Haghighat, Seron’s equipment provided constant power to a thermal artificial muscle that integrated machine learning to give it a sort of muscle memory. In another study Mirvakili was not involved in, a nonprofit research organization used Seron’s equipment to identify a new, sustainable sensor material they are in the process of commercializing.

Many uses of the machines have come as a surprise to Seron’s team, and they expect to see a new wave of applications when they release a cheaper, portable version of Seron’s machines this summer. That could include the development of new bedside monitors for patients that can detect diseases, or remote sensors for field work.

Mirvakili thinks part of the beauty of Seron’s devices is that people in the company don’t have to dream up the experiments themselves. Instead, they can focus on providing powerful scientific tools and let the research community decide on the best ways to use them.

“Because of the size and the cost of this new device, it will really open up the possibilities for researchers," Mirvakili says. “Anyone who has a good idea should be able to turn that idea into reality with our equipment and solutions. In my mind, the applications are really unimaginable and endless.”

© Credit: Christine Daniloff, MIT; iStock

Seron Electronics makes scientific equipment that can precisely source and measure power, characterize materials, and chart all of that data in a customizable software platform for multiple industries including clean energy, robotics, biomedicine, and more.

New MIT.nano equipment to accelerate innovation in “tough tech” sectors

A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

“The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

“We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

Pushing the boundaries of innovation

Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

“This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

“In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

Scholvin predicts the equipment will lead to exponential growth in research opportunities.

“I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

“The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

Fulfilling a mission

MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

“This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

"We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.”

© Credit: Applied Materials

MIT.nano is receiving a new set of nanofabrication equipment, contributed by Applied Materials, capable of fabricating wafers — thin, round slices of semiconductor material — up to 200 millimeters in diameter, or 8 inches, a size widely used in industry.

Unlocking new science with devices that control electric power

Mo Mirvakili PhD ’17 was in the middle of an experiment as a postdoc at MIT when the Covid-19 pandemic hit. Grappling with restricted access to laboratory facilities, he decided to transform his bathroom into a makeshift lab. Arranging a piece of plywood over the bathtub to support power sources and measurement devices, he conducted a study that was later published in Science Robotics, one of the top journals in the field.

The adversity made for a good story, but the truth is that it didn’t take a global pandemic to force Mirvakili to build the equipment he needed to run his experiments. Even when working in some of the most well-funded labs in the world, he needed to piece together tools to bring his experiments to life.

“My journey reflects a broader truth: With determination and resourcefulness, many of us can achieve remarkable things,” he says. “There are so many people who don't have access to labs yet have great ideas. We need to make it easier for them to bring their experiments to life.”

That’s the idea behind Seron Electronics, a company Mirvakili founded to democratize scientific experimentation. Seron develops scientific equipment that precisely sources and measures power, characterizes materials, and integrates data into a customizable software platform.

By making sophisticated experiments more accessible, Seron aims to spur a new wave of innovation across fields as diverse as microelectronics, clean energy, optics, and biomedicine.

“Our goal is to become one of the leaders in providing accurate and affordable solutions for researchers,” Mirvakili says. “This vision extends beyond academia to include companies, governments, nonprofits, and even high school students. With Seron’s devices, anyone can conduct high-quality experiments, regardless of their background or resources.”

Feeling the need for constant power

Mirvakili earned his bachelor's and master's degrees in electrical engineering, followed by a PhD in mechanical engineering under MIT Professor Ian Hunter, which involved developing a class of high-performance thermal artificial muscles, including nylon artificial muscles. During that time, Mirvakili needed to precisely control the amount of energy that flowed through his experimental setups, but he couldn't find anything online that would solve his problem.

“I had access to all sorts of high-end equipment in our lab and the department,” Mirvakili recalls. “It’s all the latest, state-of-the-art stuff. But I had to bundle all these outside tools together for my work.”

After completing his PhD, Mirvakili joined Institute Professor Bob Langer’s lab as a postdoc, where he worked directly with Langer on a totally different problem in biomedical engineering. In Langer's famously prolific lab, he saw researchers struggling to control temperatures at the microscale for a device that was encapsulating drugs.

Mirvakili realized the researchers were ultimately struggling with the same set of problems: the need to precisely control electric current, voltage, and power. Those are also problems Mirvakili has seen in his more recent research into energy storage and solar cells. After speaking with researchers at conferences from around the world to confirm the need was widespread, he started Seron Electronics.

Seron calls the first version of its products the SE Programmable Power Platforms. The platforms allow users to source and measure precisely defined quantities of electrical voltage, current, power, and charge through a desktop application with minimal signal interference, or noise.

The equipment can be used to study things like semiconductor devices, actuators, and energy storage devices, or to precisely charge batteries without damaging their performance.

The equipment can also be used to study material performance because it can measure how materials react to precise electrical stimulation at a high resolution, and for quality control because it can test chips and flag problems.

The use cases are varied, but Seron’s overarching goal is to enable more innovation faster.

“Because our system is so intuitive, you reduce the time to get results,” Mirvakili says. “You can set it up in less than five minutes. It’s plug-and-play. Researchers tell us it speeds things up a lot.”

New frontiers

In a recent paper Mirvakili coauthored with MIT research affiliate Ehsan Haghighat, Seron’s equipment provided constant power to a thermal artificial muscle that integrated machine learning to give it a sort of muscle memory. In another study Mirvakili was not involved in, a nonprofit research organization used Seron’s equipment to identify a new, sustainable sensor material they are in the process of commercializing.

Many uses of the machines have come as a surprise to Seron’s team, and they expect to see a new wave of applications when they release a cheaper, portable version of Seron’s machines this summer. That could include the development of new bedside monitors for patients that can detect diseases, or remote sensors for field work.

Mirvakili thinks part of the beauty of Seron’s devices is that people in the company don’t have to dream up the experiments themselves. Instead, they can focus on providing powerful scientific tools and let the research community decide on the best ways to use them.

“Because of the size and the cost of this new device, it will really open up the possibilities for researchers," Mirvakili says. “Anyone who has a good idea should be able to turn that idea into reality with our equipment and solutions. In my mind, the applications are really unimaginable and endless.”

© Credit: Christine Daniloff, MIT; iStock

Seron Electronics makes scientific equipment that can precisely source and measure power, characterize materials, and chart all of that data in a customizable software platform for multiple industries including clean energy, robotics, biomedicine, and more.

New MIT.nano equipment to accelerate innovation in “tough tech” sectors

A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

“The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

“We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

Pushing the boundaries of innovation

Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

“This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

“In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

Scholvin predicts the equipment will lead to exponential growth in research opportunities.

“I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

“The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

Fulfilling a mission

MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

“This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

"We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.”

© Credit: Applied Materials

MIT.nano is receiving a new set of nanofabrication equipment, contributed by Applied Materials, capable of fabricating wafers — thin, round slices of semiconductor material — up to 200 millimeters in diameter, or 8 inches, a size widely used in industry.

Unlocking new science with devices that control electric power

Mo Mirvakili PhD ’17 was in the middle of an experiment as a postdoc at MIT when the Covid-19 pandemic hit. Grappling with restricted access to laboratory facilities, he decided to transform his bathroom into a makeshift lab. Arranging a piece of plywood over the bathtub to support power sources and measurement devices, he conducted a study that was later published in Science Robotics, one of the top journals in the field.

The adversity made for a good story, but the truth is that it didn’t take a global pandemic to force Mirvakili to build the equipment he needed to run his experiments. Even when working in some of the most well-funded labs in the world, he needed to piece together tools to bring his experiments to life.

“My journey reflects a broader truth: With determination and resourcefulness, many of us can achieve remarkable things,” he says. “There are so many people who don't have access to labs yet have great ideas. We need to make it easier for them to bring their experiments to life.”

That’s the idea behind Seron Electronics, a company Mirvakili founded to democratize scientific experimentation. Seron develops scientific equipment that precisely sources and measures power, characterizes materials, and integrates data into a customizable software platform.

By making sophisticated experiments more accessible, Seron aims to spur a new wave of innovation across fields as diverse as microelectronics, clean energy, optics, and biomedicine.

“Our goal is to become one of the leaders in providing accurate and affordable solutions for researchers,” Mirvakili says. “This vision extends beyond academia to include companies, governments, nonprofits, and even high school students. With Seron’s devices, anyone can conduct high-quality experiments, regardless of their background or resources.”

Feeling the need for constant power

Mirvakili earned his bachelor's and master's degrees in electrical engineering, followed by a PhD in mechanical engineering under MIT Professor Ian Hunter, which involved developing a class of high-performance thermal artificial muscles, including nylon artificial muscles. During that time, Mirvakili needed to precisely control the amount of energy that flowed through his experimental setups, but he couldn't find anything online that would solve his problem.

“I had access to all sorts of high-end equipment in our lab and the department,” Mirvakili recalls. “It’s all the latest, state-of-the-art stuff. But I had to bundle all these outside tools together for my work.”

After completing his PhD, Mirvakili joined Institute Professor Bob Langer’s lab as a postdoc, where he worked directly with Langer on a totally different problem in biomedical engineering. In Langer's famously prolific lab, he saw researchers struggling to control temperatures at the microscale for a device that was encapsulating drugs.

Mirvakili realized the researchers were ultimately struggling with the same set of problems: the need to precisely control electric current, voltage, and power. Those are also problems Mirvakili has seen in his more recent research into energy storage and solar cells. After speaking with researchers at conferences from around the world to confirm the need was widespread, he started Seron Electronics.

Seron calls the first version of its products the SE Programmable Power Platforms. The platforms allow users to source and measure precisely defined quantities of electrical voltage, current, power, and charge through a desktop application with minimal signal interference, or noise.

The equipment can be used to study things like semiconductor devices, actuators, and energy storage devices, or to precisely charge batteries without damaging their performance.

The equipment can also be used to study material performance because it can measure how materials react to precise electrical stimulation at a high resolution, and for quality control because it can test chips and flag problems.

The use cases are varied, but Seron’s overarching goal is to enable more innovation faster.

“Because our system is so intuitive, you reduce the time to get results,” Mirvakili says. “You can set it up in less than five minutes. It’s plug-and-play. Researchers tell us it speeds things up a lot.”

New frontiers

In a recent paper Mirvakili coauthored with MIT research affiliate Ehsan Haghighat, Seron’s equipment provided constant power to a thermal artificial muscle that integrated machine learning to give it a sort of muscle memory. In another study Mirvakili was not involved in, a nonprofit research organization used Seron’s equipment to identify a new, sustainable sensor material they are in the process of commercializing.

Many uses of the machines have come as a surprise to Seron’s team, and they expect to see a new wave of applications when they release a cheaper, portable version of Seron’s machines this summer. That could include the development of new bedside monitors for patients that can detect diseases, or remote sensors for field work.

Mirvakili thinks part of the beauty of Seron’s devices is that people in the company don’t have to dream up the experiments themselves. Instead, they can focus on providing powerful scientific tools and let the research community decide on the best ways to use them.

“Because of the size and the cost of this new device, it will really open up the possibilities for researchers," Mirvakili says. “Anyone who has a good idea should be able to turn that idea into reality with our equipment and solutions. In my mind, the applications are really unimaginable and endless.”

© Credit: Christine Daniloff, MIT; iStock

Seron Electronics makes scientific equipment that can precisely source and measure power, characterize materials, and chart all of that data in a customizable software platform for multiple industries including clean energy, robotics, biomedicine, and more.

New MIT.nano equipment to accelerate innovation in “tough tech” sectors

A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

“The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

“We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

Pushing the boundaries of innovation

Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

“This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

“In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

Scholvin predicts the equipment will lead to exponential growth in research opportunities.

“I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

“The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

Fulfilling a mission

MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

“This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

"We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.”

© Credit: Applied Materials

MIT.nano is receiving a new set of nanofabrication equipment, contributed by Applied Materials, capable of fabricating wafers — thin, round slices of semiconductor material — up to 200 millimeters in diameter, or 8 inches, a size widely used in industry.

Unlocking new science with devices that control electric power

Mo Mirvakili PhD ’17 was in the middle of an experiment as a postdoc at MIT when the Covid-19 pandemic hit. Grappling with restricted access to laboratory facilities, he decided to transform his bathroom into a makeshift lab. Arranging a piece of plywood over the bathtub to support power sources and measurement devices, he conducted a study that was later published in Science Robotics, one of the top journals in the field.

The adversity made for a good story, but the truth is that it didn’t take a global pandemic to force Mirvakili to build the equipment he needed to run his experiments. Even when working in some of the most well-funded labs in the world, he needed to piece together tools to bring his experiments to life.

“My journey reflects a broader truth: With determination and resourcefulness, many of us can achieve remarkable things,” he says. “There are so many people who don't have access to labs yet have great ideas. We need to make it easier for them to bring their experiments to life.”

That’s the idea behind Seron Electronics, a company Mirvakili founded to democratize scientific experimentation. Seron develops scientific equipment that precisely sources and measures power, characterizes materials, and integrates data into a customizable software platform.

By making sophisticated experiments more accessible, Seron aims to spur a new wave of innovation across fields as diverse as microelectronics, clean energy, optics, and biomedicine.

“Our goal is to become one of the leaders in providing accurate and affordable solutions for researchers,” Mirvakili says. “This vision extends beyond academia to include companies, governments, nonprofits, and even high school students. With Seron’s devices, anyone can conduct high-quality experiments, regardless of their background or resources.”

Feeling the need for constant power

Mirvakili earned his bachelor's and master's degrees in electrical engineering, followed by a PhD in mechanical engineering under MIT Professor Ian Hunter, which involved developing a class of high-performance thermal artificial muscles, including nylon artificial muscles. During that time, Mirvakili needed to precisely control the amount of energy that flowed through his experimental setups, but he couldn't find anything online that would solve his problem.

“I had access to all sorts of high-end equipment in our lab and the department,” Mirvakili recalls. “It’s all the latest, state-of-the-art stuff. But I had to bundle all these outside tools together for my work.”

After completing his PhD, Mirvakili joined Institute Professor Bob Langer’s lab as a postdoc, where he worked directly with Langer on a totally different problem in biomedical engineering. In Langer's famously prolific lab, he saw researchers struggling to control temperatures at the microscale for a device that was encapsulating drugs.

Mirvakili realized the researchers were ultimately struggling with the same set of problems: the need to precisely control electric current, voltage, and power. Those are also problems Mirvakili has seen in his more recent research into energy storage and solar cells. After speaking with researchers at conferences from around the world to confirm the need was widespread, he started Seron Electronics.

Seron calls the first version of its products the SE Programmable Power Platforms. The platforms allow users to source and measure precisely defined quantities of electrical voltage, current, power, and charge through a desktop application with minimal signal interference, or noise.

The equipment can be used to study things like semiconductor devices, actuators, and energy storage devices, or to precisely charge batteries without damaging their performance.

The equipment can also be used to study material performance because it can measure how materials react to precise electrical stimulation at a high resolution, and for quality control because it can test chips and flag problems.

The use cases are varied, but Seron’s overarching goal is to enable more innovation faster.

“Because our system is so intuitive, you reduce the time to get results,” Mirvakili says. “You can set it up in less than five minutes. It’s plug-and-play. Researchers tell us it speeds things up a lot.”

New frontiers

In a recent paper Mirvakili coauthored with MIT research affiliate Ehsan Haghighat, Seron’s equipment provided constant power to a thermal artificial muscle that integrated machine learning to give it a sort of muscle memory. In another study Mirvakili was not involved in, a nonprofit research organization used Seron’s equipment to identify a new, sustainable sensor material they are in the process of commercializing.

Many uses of the machines have come as a surprise to Seron’s team, and they expect to see a new wave of applications when they release a cheaper, portable version of Seron’s machines this summer. That could include the development of new bedside monitors for patients that can detect diseases, or remote sensors for field work.

Mirvakili thinks part of the beauty of Seron’s devices is that people in the company don’t have to dream up the experiments themselves. Instead, they can focus on providing powerful scientific tools and let the research community decide on the best ways to use them.

“Because of the size and the cost of this new device, it will really open up the possibilities for researchers," Mirvakili says. “Anyone who has a good idea should be able to turn that idea into reality with our equipment and solutions. In my mind, the applications are really unimaginable and endless.”

© Credit: Christine Daniloff, MIT; iStock

Seron Electronics makes scientific equipment that can precisely source and measure power, characterize materials, and chart all of that data in a customizable software platform for multiple industries including clean energy, robotics, biomedicine, and more.

New MIT.nano equipment to accelerate innovation in “tough tech” sectors

A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

“The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

“We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

Pushing the boundaries of innovation

Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

“This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

“In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

Scholvin predicts the equipment will lead to exponential growth in research opportunities.

“I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

“The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

Fulfilling a mission

MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

“This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

"We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.”

© Credit: Applied Materials

MIT.nano is receiving a new set of nanofabrication equipment, contributed by Applied Materials, capable of fabricating wafers — thin, round slices of semiconductor material — up to 200 millimeters in diameter, or 8 inches, a size widely used in industry.

Unlocking new science with devices that control electric power

Mo Mirvakili PhD ’17 was in the middle of an experiment as a postdoc at MIT when the Covid-19 pandemic hit. Grappling with restricted access to laboratory facilities, he decided to transform his bathroom into a makeshift lab. Arranging a piece of plywood over the bathtub to support power sources and measurement devices, he conducted a study that was later published in Science Robotics, one of the top journals in the field.

The adversity made for a good story, but the truth is that it didn’t take a global pandemic to force Mirvakili to build the equipment he needed to run his experiments. Even when working in some of the most well-funded labs in the world, he needed to piece together tools to bring his experiments to life.

“My journey reflects a broader truth: With determination and resourcefulness, many of us can achieve remarkable things,” he says. “There are so many people who don't have access to labs yet have great ideas. We need to make it easier for them to bring their experiments to life.”

That’s the idea behind Seron Electronics, a company Mirvakili founded to democratize scientific experimentation. Seron develops scientific equipment that precisely sources and measures power, characterizes materials, and integrates data into a customizable software platform.

By making sophisticated experiments more accessible, Seron aims to spur a new wave of innovation across fields as diverse as microelectronics, clean energy, optics, and biomedicine.

“Our goal is to become one of the leaders in providing accurate and affordable solutions for researchers,” Mirvakili says. “This vision extends beyond academia to include companies, governments, nonprofits, and even high school students. With Seron’s devices, anyone can conduct high-quality experiments, regardless of their background or resources.”

Feeling the need for constant power

Mirvakili earned his bachelor's and master's degrees in electrical engineering, followed by a PhD in mechanical engineering under MIT Professor Ian Hunter, which involved developing a class of high-performance thermal artificial muscles, including nylon artificial muscles. During that time, Mirvakili needed to precisely control the amount of energy that flowed through his experimental setups, but he couldn't find anything online that would solve his problem.

“I had access to all sorts of high-end equipment in our lab and the department,” Mirvakili recalls. “It’s all the latest, state-of-the-art stuff. But I had to bundle all these outside tools together for my work.”

After completing his PhD, Mirvakili joined Institute Professor Bob Langer’s lab as a postdoc, where he worked directly with Langer on a totally different problem in biomedical engineering. In Langer's famously prolific lab, he saw researchers struggling to control temperatures at the microscale for a device that was encapsulating drugs.

Mirvakili realized the researchers were ultimately struggling with the same set of problems: the need to precisely control electric current, voltage, and power. Those are also problems Mirvakili has seen in his more recent research into energy storage and solar cells. After speaking with researchers at conferences from around the world to confirm the need was widespread, he started Seron Electronics.

Seron calls the first version of its products the SE Programmable Power Platforms. The platforms allow users to source and measure precisely defined quantities of electrical voltage, current, power, and charge through a desktop application with minimal signal interference, or noise.

The equipment can be used to study things like semiconductor devices, actuators, and energy storage devices, or to precisely charge batteries without damaging their performance.

The equipment can also be used to study material performance because it can measure how materials react to precise electrical stimulation at a high resolution, and for quality control because it can test chips and flag problems.

The use cases are varied, but Seron’s overarching goal is to enable more innovation faster.

“Because our system is so intuitive, you reduce the time to get results,” Mirvakili says. “You can set it up in less than five minutes. It’s plug-and-play. Researchers tell us it speeds things up a lot.”

New frontiers

In a recent paper Mirvakili coauthored with MIT research affiliate Ehsan Haghighat, Seron’s equipment provided constant power to a thermal artificial muscle that integrated machine learning to give it a sort of muscle memory. In another study Mirvakili was not involved in, a nonprofit research organization used Seron’s equipment to identify a new, sustainable sensor material they are in the process of commercializing.

Many uses of the machines have come as a surprise to Seron’s team, and they expect to see a new wave of applications when they release a cheaper, portable version of Seron’s machines this summer. That could include the development of new bedside monitors for patients that can detect diseases, or remote sensors for field work.

Mirvakili thinks part of the beauty of Seron’s devices is that people in the company don’t have to dream up the experiments themselves. Instead, they can focus on providing powerful scientific tools and let the research community decide on the best ways to use them.

“Because of the size and the cost of this new device, it will really open up the possibilities for researchers," Mirvakili says. “Anyone who has a good idea should be able to turn that idea into reality with our equipment and solutions. In my mind, the applications are really unimaginable and endless.”

© Credit: Christine Daniloff, MIT; iStock

Seron Electronics makes scientific equipment that can precisely source and measure power, characterize materials, and chart all of that data in a customizable software platform for multiple industries including clean energy, robotics, biomedicine, and more.

New MIT.nano equipment to accelerate innovation in “tough tech” sectors

A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

“The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

“We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

Pushing the boundaries of innovation

Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

“This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

“In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

Scholvin predicts the equipment will lead to exponential growth in research opportunities.

“I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

“The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

Fulfilling a mission

MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

“This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

"We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.”

© Credit: Applied Materials

MIT.nano is receiving a new set of nanofabrication equipment, contributed by Applied Materials, capable of fabricating wafers — thin, round slices of semiconductor material — up to 200 millimeters in diameter, or 8 inches, a size widely used in industry.

New MIT.nano equipment to accelerate innovation in “tough tech” sectors

A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

“The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

“We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

Pushing the boundaries of innovation

Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

“This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

“In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

Scholvin predicts the equipment will lead to exponential growth in research opportunities.

“I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

“The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

Fulfilling a mission

MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

“This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

"We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.”

© Credit: Applied Materials

MIT.nano is receiving a new set of nanofabrication equipment, contributed by Applied Materials, capable of fabricating wafers — thin, round slices of semiconductor material — up to 200 millimeters in diameter, or 8 inches, a size widely used in industry.

New MIT.nano equipment to accelerate innovation in “tough tech” sectors

A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

“The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

“We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

Pushing the boundaries of innovation

Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

“This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

“In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

Scholvin predicts the equipment will lead to exponential growth in research opportunities.

“I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

“The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

Fulfilling a mission

MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

“This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

"We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.”

© Credit: Applied Materials

MIT.nano is receiving a new set of nanofabrication equipment, contributed by Applied Materials, capable of fabricating wafers — thin, round slices of semiconductor material — up to 200 millimeters in diameter, or 8 inches, a size widely used in industry.

New MIT.nano equipment to accelerate innovation in “tough tech” sectors

A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

“The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

“We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

Pushing the boundaries of innovation

Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

“This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

“In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

Scholvin predicts the equipment will lead to exponential growth in research opportunities.

“I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

“The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

Fulfilling a mission

MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

“This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

"We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.”

© Credit: Applied Materials

MIT.nano is receiving a new set of nanofabrication equipment, contributed by Applied Materials, capable of fabricating wafers — thin, round slices of semiconductor material — up to 200 millimeters in diameter, or 8 inches, a size widely used in industry.

New MIT.nano equipment to accelerate innovation in “tough tech” sectors

A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

“The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

“We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

Pushing the boundaries of innovation

Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

“This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

“In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

Scholvin predicts the equipment will lead to exponential growth in research opportunities.

“I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

“The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

Fulfilling a mission

MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

“This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

"We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.”

© Credit: Applied Materials

MIT.nano is receiving a new set of nanofabrication equipment, contributed by Applied Materials, capable of fabricating wafers — thin, round slices of semiconductor material — up to 200 millimeters in diameter, or 8 inches, a size widely used in industry.
❌