FreshRSS

Zobrazení pro čtení

Jsou dostupné nové články, klikněte pro obnovení stránky.

SRAM Security Concerns Grow

SRAM security concerns are intensifying as a combination of new and existing techniques allow hackers to tap into data for longer periods of time after a device is powered down.

This is particularly alarming as the leading edge of design shifts from planar SoCs to heterogeneous systems in package, such as those used in AI or edge processing, where chiplets frequently have their own memory hierarchy. Until now, most cybersecurity concerns involving volatile memory have focused on DRAM, because it is often external and easier to attack. SRAM, in contrast, does not contain a component as obviously vulnerable as a heat-sensitive capacitor, and in the past it has been harder to pinpoint. But as SoCs are disaggregated and more features are added into devices, SRAM is becoming a much bigger security concern.

The attack scheme is well understood. Known as cold boot, it was first identified in 2008, and is essentially a variant of a side-channel attack. In a cold boot approach, an attacker dumps data from internal SRAM to an external device, and then restarts the system from the external device with some code modification. “Cold boot is primarily targeted at SRAM, with the two primary defenses being isolation and in-memory encryption,” said Vijay Seshadri, distinguished engineer at Cycuity.

Compared with network-based attacks, such as DRAM’s rowhammer, cold boot is relatively simple. It relies on physical proximity and a can of compressed air.

The vulnerability was first described by Edward Felton, director of Princeton University’s Center for Information Technology Policy, J. Alex Halderman, currently director of the Center for Computer Security & Society at the University of Michigan, and colleagues. The breakthrough in their research was based on the growing realization in the engineering research community that data does not vanish from memory the moment a device is turned off, which until then was a common assumption. Instead, data in both DRAM and SRAM has a brief “remanence.”[1]

Using a cold boot approach, data can be retrieved, especially if an attacker sprays the chip with compressed air, cooling it enough to slow the degradation of the data. As the researchers described their approach, “We obtained surface temperatures of approximately −50°C with a simple cooling technique — discharging inverted cans of ‘canned air’ duster spray directly onto the chips. At these temperatures, we typically found that fewer than 1% of bits decayed even after 10 minutes without power.”

Unfortunately, despite nearly 20 years of security research since the publication of the Halderman paper, the authors’ warning still holds true. “Though we discuss several strategies for mitigating these risks, we know of no simple remedy that would eliminate them.”

However unrealistic, there is one simple and obvious remedy to cold boot — never leave a device unattended. But given human behavior, it’s safer to assume that every device is vulnerable, from smart watches to servers, as well as automotive chips used for increasingly autonomous driving.

While the original research exclusively examined DRAM, within the last six years cold boot has proven to be one of the most serious vulnerabilities for SRAM. In 2018, researchers at Germany’s Technische Universität Darmstadt published a paper describing a cold boot attack method that is highly resistant to memory erasure techniques, and which can be used to manipulate the cryptographic keys produced by the SRAM physical unclonable function (PUF).

As with so many security issues, it’s been a cat-and-mouse game between remedies and counter-attacks. And because cold boot takes advantage of slowing down memory degradation, in 2022 Yang-Kyu Choi and colleagues at the Korea Advanced Institute of Science and Technology (KAIST), described a way to undo the slowdown with an ultra-fast data sanitization method that worked within 5 ns, using back bias to control the device parameters of CMOS.

Fig. 1: Asymmetric forward back-biasing scheme for permanent erasing. (a) All the data are reset to 1. (b) All the data are reset to 0. Whether all the data where reset to 1 or 0 is determined by the asymmetric forward back-biasing scheme. Source: KAIST/Creative Commons [2]

Fig. 1: Asymmetric forward back-biasing scheme for permanent erasing. (a) All the data are reset to 1. (b) All the data are reset to 0. Whether all the data where reset to 1 or 0 is determined by the asymmetric forward back-biasing scheme. Source: KAIST/Creative Commons [2]

Their paper, as well as others, have inspired new approaches to combating cold boot attacks.

“To mitigate the risk of unauthorized access from unknown devices, main devices, or servers, check the authenticated code and unique identity of each accessing device,” said Jongsin Yun, memory technologist at Siemens EDA. “SRAM PUF is one of the ways to securely identify each device. SRAM is made of two inverters cross-coupled to each other. Although each inverter is designed to be the same device, normally one part of the inverter has a somewhat stronger NMOS than the other due to inherent random dopant fluctuation. During the initial power-on process, SRAM data will be either data 1 or 0, depending on which side has a stronger device. In other words, the initial data state of the SRAM array at the power on is decided by this unique random process variation and most of the bits maintain this property for life. One can use this unique pattern as a fingerprint of a device. The SRAM PUF data is reconstructed with other coded data to form a cryptographic key. SRAM PUF is a great way to anchor its secure data into hardware. Hackers may use a DFT circuit to access the memory. To avoid insecurely reading the SRAM information through DFT, the security-critical design makes DFT force delete the data as an initial process of TEST mode.”

However, there can be instances where data may be required to be kept in a non-volatile memory (NVM). “Data is considered insecure if the NVM is located outside of the device,” said Yun. “Therefore, secured data needs to be stored within the device with write protection. One-time programmable (OTP) memory or fuses are good storage options to prevent malicious attackers from tampering with the modified information. OTP memory and fuses are used to store cryptographic keys, authentication information, and other critical settings for operation within the device. It is useful for anti-rollback, which prevents hackers from exploiting old vulnerabilities that have been fixed in newer versions.”

Chiplet vulnerabilities
Chiplets also could present another vector for attack, due to their complexity and interconnections. “A chiplet has memory, so it’s going to be attacked,” said Cycuity’s Seshadri. “Chiplets, in general, are going to exacerbate the problem, rather than keeping it status quo, because you’re going to have one chiplet talking to another. Could an attack on one chiplet have a side effect on another? There need to be standards to address this. In fact, they’re coming into play already. A chiplet provider has to say, ‘Here’s what I’ve done for security. Here’s what needs to be done when interfacing with another chiplet.”

Yun notes there is a further physical vulnerability for those working with chiplets and SiPs. “When multiple chiplets are connected to form a SiP, we have to trust data coming from an external chip, which creates further complications. Verification of the chiplet’s authenticity becomes very important for SiPs, as there is a risk of malicious counterfeit chiplets being connected to the package for hacking purposes. Detection of such counterfeit chiplets is imperative.”

These precautions also apply when working with DRAM. In all situations, Seshardi said, thinking about security has to go beyond device-level protection. “The onus of protecting DRAM is not just on the DRAM designer or the memory designer,” he said. “It has to be secured by design principles when you are developing. In addition, you have to look at this holistically and do it at a system level. You must consider all the other things that communicate with DRAM or that are placed near DRAM. You must look at a holistic solution, all the way from software down to things like the memory controller and then finally, the DRAM itself.”

Encryption as a backup
Data itself always must be encrypted as second layer of protection against known and novel attacks, so an organization’s assets will still be protected even if someone breaks in via cold boot or another method.

“The first and primary method of preventing a cold boot attack is limiting physical access to the systems, or physically modifying the systems case or hardware preventing an attacker’s access,” said Jim Montgomery, market development director, semiconductor at TXOne Networks. “The most effective programmatic defense against an attack is to ensure encryption of memory using either a hardware- or software-based approach. Utilizing memory encryption will ensure that regardless of trying to dump the memory, or physically removing the memory, the encryption keys will remain secure.”

Montgomery also points out that TXOne is working with the Semiconductor Manufacturing Cybersecurity Consortium (SMCC) to develop common criteria based upon SEMI E187 and E188 standards to assist DM’s and OEM’s to implement secure procedures for systems security and integrity, including controlling the physical environment.

What kind and how much encryption will depend on use cases, said Jun Kawaguchi, global marketing executive for Winbond. “Encryption strength for a traffic signal controller is going to be different from encryption for nuclear plants or medical devices, critical applications where you need much higher levels,” he said. “There are different strengths and costs to it.”

Another problem, in the post-quantum era, is that encryption itself may be vulnerable. To defend against those possibilities, researchers are developing post-quantum encryption schemes. One way to stay a step ahead is homomorphic encryption [HE], which will find a role in data sharing, since computations can be performed on encrypted data without first having to decrypt it.

Homomorphic encryption could be in widespread use as soon as the next few years, according to Ronen Levy, senior manager for IBM’s Cloud Security & Privacy Technologies Department, and Omri Soceanu, AI Security Group manager at IBM.  However, there are still challenges to be overcome.

“There are three main inhibitors for widespread adoption of homomorphic encryption — performance, consumability, and standardization,” according to Levy. “The main inhibitor, by far, is performance. Homomorphic encryption comes with some latency and storage overheads. FHE hardware acceleration will be critical to solving these issues, as well as algorithmic and cryptographic solutions, but without the necessary expertise it can be quite challenging.”

An additional issue is that most consumers of HE technology, such as data scientists and application developers, do not possess deep cryptographic skills, HE solutions that are designed for cryptographers can be impractical. A few HE solutions require algorithmic and cryptographic expertise that inhibit adoption by those who lack these skills.

Finally, there is a lack of standardization. “Homomorphic encryption is in the process of being standardized,” said Soceanu. “But until it is fully standardized, large organizations may be hesitant to adopt a cryptographic solution that has not been approved by standardization bodies.”

Once these issues are resolved, they predicted widespread use as soon as the next few years. “Performance is already practical for a variety of use cases, and as hardware solutions for homomorphic encryption become a reality, more use cases would become practical,” said Levy. “Consumability is addressed by creating more solutions, making it easier and hopefully as frictionless as possible to move analytics to homomorphic encryption. Additionally, standardization efforts are already in progress.”

A new attack and an old problem
Unfortunately, security never will be as simple as making users more aware of their surroundings. Otherwise, cold boot could be completely eliminated as a threat. Instead, it’s essential to keep up with conference talks and the published literature, as graduate students keep probing SRAM for vulnerabilities, hopefully one step ahead of genuine attackers.

For example, SRAM-related cold boot attacks originally targeted discrete SRAM. The reason is that it’s far more complicated to attack on-chip SRAM, which is isolated from external probing and has minimal intrinsic capacitance. However, in 2022, Jubayer Mahmod, then a graduate student at Virginia Tech and his advisor, associate professor Matthew Hicks, demonstrated what they dubbed “Volt Boot,” a new method that could penetrate on-chip SRAM. According to their paper, “Volt Boot leverages asymmetrical power states (e.g., on vs. off) to force SRAM state retention across power cycles, eliminating the need for traditional cold boot attack enablers, such as low-temperature or intrinsic data retention time…Unlike other forms of SRAM data retention attacks, Volt Boot retrieves data with 100% accuracy — without any complex post-processing.”

Conclusion
While scientists and engineers continue to identify vulnerabilities and develop security solutions, decisions about how much security to include in a design is an economic one. Cost vs. risk is a complex formula that depends on the end application, the impact of a breach, and the likelihood that an attack will occur.

“It’s like insurance,” said Kawaguchi. “Security engineers and people like us who are trying to promote security solutions get frustrated because, similar to insurance pitches, people respond with skepticism. ‘Why would I need it? That problem has never happened before.’ Engineers have a hard time convincing their managers to spend that extra dollar on the costs because of this ‘it-never-happened-before’ attitude. In the end, there are compromises. Yet ultimately, it’s going to cost manufacturers a lot of money when suddenly there’s a deluge of demands to fix this situation right away.”

References

  1. S. Skorobogatov, “Low temperature data remanence in static RAM”, Technical report UCAM-CL-TR-536, University of Cambridge Computer Laboratory, June 2002.
  2. Han, SJ., Han, JK., Yun, GJ. et al. Ultra-fast data sanitization of SRAM by back-biasing to resist a cold boot attack. Sci Rep 12, 35 (2022). https://doi.org/10.1038/s41598-021-03994-2

The post SRAM Security Concerns Grow appeared first on Semiconductor Engineering.

SRAM Security Concerns Grow

SRAM security concerns are intensifying as a combination of new and existing techniques allow hackers to tap into data for longer periods of time after a device is powered down.

This is particularly alarming as the leading edge of design shifts from planar SoCs to heterogeneous systems in package, such as those used in AI or edge processing, where chiplets frequently have their own memory hierarchy. Until now, most cybersecurity concerns involving volatile memory have focused on DRAM, because it is often external and easier to attack. SRAM, in contrast, does not contain a component as obviously vulnerable as a heat-sensitive capacitor, and in the past it has been harder to pinpoint. But as SoCs are disaggregated and more features are added into devices, SRAM is becoming a much bigger security concern.

The attack scheme is well understood. Known as cold boot, it was first identified in 2008, and is essentially a variant of a side-channel attack. In a cold boot approach, an attacker dumps data from internal SRAM to an external device, and then restarts the system from the external device with some code modification. “Cold boot is primarily targeted at SRAM, with the two primary defenses being isolation and in-memory encryption,” said Vijay Seshadri, distinguished engineer at Cycuity.

Compared with network-based attacks, such as DRAM’s rowhammer, cold boot is relatively simple. It relies on physical proximity and a can of compressed air.

The vulnerability was first described by Edward Felton, director of Princeton University’s Center for Information Technology Policy, J. Alex Halderman, currently director of the Center for Computer Security & Society at the University of Michigan, and colleagues. The breakthrough in their research was based on the growing realization in the engineering research community that data does not vanish from memory the moment a device is turned off, which until then was a common assumption. Instead, data in both DRAM and SRAM has a brief “remanence.”[1]

Using a cold boot approach, data can be retrieved, especially if an attacker sprays the chip with compressed air, cooling it enough to slow the degradation of the data. As the researchers described their approach, “We obtained surface temperatures of approximately −50°C with a simple cooling technique — discharging inverted cans of ‘canned air’ duster spray directly onto the chips. At these temperatures, we typically found that fewer than 1% of bits decayed even after 10 minutes without power.”

Unfortunately, despite nearly 20 years of security research since the publication of the Halderman paper, the authors’ warning still holds true. “Though we discuss several strategies for mitigating these risks, we know of no simple remedy that would eliminate them.”

However unrealistic, there is one simple and obvious remedy to cold boot — never leave a device unattended. But given human behavior, it’s safer to assume that every device is vulnerable, from smart watches to servers, as well as automotive chips used for increasingly autonomous driving.

While the original research exclusively examined DRAM, within the last six years cold boot has proven to be one of the most serious vulnerabilities for SRAM. In 2018, researchers at Germany’s Technische Universität Darmstadt published a paper describing a cold boot attack method that is highly resistant to memory erasure techniques, and which can be used to manipulate the cryptographic keys produced by the SRAM physical unclonable function (PUF).

As with so many security issues, it’s been a cat-and-mouse game between remedies and counter-attacks. And because cold boot takes advantage of slowing down memory degradation, in 2022 Yang-Kyu Choi and colleagues at the Korea Advanced Institute of Science and Technology (KAIST), described a way to undo the slowdown with an ultra-fast data sanitization method that worked within 5 ns, using back bias to control the device parameters of CMOS.

Fig. 1: Asymmetric forward back-biasing scheme for permanent erasing. (a) All the data are reset to 1. (b) All the data are reset to 0. Whether all the data where reset to 1 or 0 is determined by the asymmetric forward back-biasing scheme. Source: KAIST/Creative Commons [2]

Fig. 1: Asymmetric forward back-biasing scheme for permanent erasing. (a) All the data are reset to 1. (b) All the data are reset to 0. Whether all the data where reset to 1 or 0 is determined by the asymmetric forward back-biasing scheme. Source: KAIST/Creative Commons [2]

Their paper, as well as others, have inspired new approaches to combating cold boot attacks.

“To mitigate the risk of unauthorized access from unknown devices, main devices, or servers, check the authenticated code and unique identity of each accessing device,” said Jongsin Yun, memory technologist at Siemens EDA. “SRAM PUF is one of the ways to securely identify each device. SRAM is made of two inverters cross-coupled to each other. Although each inverter is designed to be the same device, normally one part of the inverter has a somewhat stronger NMOS than the other due to inherent random dopant fluctuation. During the initial power-on process, SRAM data will be either data 1 or 0, depending on which side has a stronger device. In other words, the initial data state of the SRAM array at the power on is decided by this unique random process variation and most of the bits maintain this property for life. One can use this unique pattern as a fingerprint of a device. The SRAM PUF data is reconstructed with other coded data to form a cryptographic key. SRAM PUF is a great way to anchor its secure data into hardware. Hackers may use a DFT circuit to access the memory. To avoid insecurely reading the SRAM information through DFT, the security-critical design makes DFT force delete the data as an initial process of TEST mode.”

However, there can be instances where data may be required to be kept in a non-volatile memory (NVM). “Data is considered insecure if the NVM is located outside of the device,” said Yun. “Therefore, secured data needs to be stored within the device with write protection. One-time programmable (OTP) memory or fuses are good storage options to prevent malicious attackers from tampering with the modified information. OTP memory and fuses are used to store cryptographic keys, authentication information, and other critical settings for operation within the device. It is useful for anti-rollback, which prevents hackers from exploiting old vulnerabilities that have been fixed in newer versions.”

Chiplet vulnerabilities
Chiplets also could present another vector for attack, due to their complexity and interconnections. “A chiplet has memory, so it’s going to be attacked,” said Cycuity’s Seshadri. “Chiplets, in general, are going to exacerbate the problem, rather than keeping it status quo, because you’re going to have one chiplet talking to another. Could an attack on one chiplet have a side effect on another? There need to be standards to address this. In fact, they’re coming into play already. A chiplet provider has to say, ‘Here’s what I’ve done for security. Here’s what needs to be done when interfacing with another chiplet.”

Yun notes there is a further physical vulnerability for those working with chiplets and SiPs. “When multiple chiplets are connected to form a SiP, we have to trust data coming from an external chip, which creates further complications. Verification of the chiplet’s authenticity becomes very important for SiPs, as there is a risk of malicious counterfeit chiplets being connected to the package for hacking purposes. Detection of such counterfeit chiplets is imperative.”

These precautions also apply when working with DRAM. In all situations, Seshardi said, thinking about security has to go beyond device-level protection. “The onus of protecting DRAM is not just on the DRAM designer or the memory designer,” he said. “It has to be secured by design principles when you are developing. In addition, you have to look at this holistically and do it at a system level. You must consider all the other things that communicate with DRAM or that are placed near DRAM. You must look at a holistic solution, all the way from software down to things like the memory controller and then finally, the DRAM itself.”

Encryption as a backup
Data itself always must be encrypted as second layer of protection against known and novel attacks, so an organization’s assets will still be protected even if someone breaks in via cold boot or another method.

“The first and primary method of preventing a cold boot attack is limiting physical access to the systems, or physically modifying the systems case or hardware preventing an attacker’s access,” said Jim Montgomery, market development director, semiconductor at TXOne Networks. “The most effective programmatic defense against an attack is to ensure encryption of memory using either a hardware- or software-based approach. Utilizing memory encryption will ensure that regardless of trying to dump the memory, or physically removing the memory, the encryption keys will remain secure.”

Montgomery also points out that TXOne is working with the Semiconductor Manufacturing Cybersecurity Consortium (SMCC) to develop common criteria based upon SEMI E187 and E188 standards to assist DM’s and OEM’s to implement secure procedures for systems security and integrity, including controlling the physical environment.

What kind and how much encryption will depend on use cases, said Jun Kawaguchi, global marketing executive for Winbond. “Encryption strength for a traffic signal controller is going to be different from encryption for nuclear plants or medical devices, critical applications where you need much higher levels,” he said. “There are different strengths and costs to it.”

Another problem, in the post-quantum era, is that encryption itself may be vulnerable. To defend against those possibilities, researchers are developing post-quantum encryption schemes. One way to stay a step ahead is homomorphic encryption [HE], which will find a role in data sharing, since computations can be performed on encrypted data without first having to decrypt it.

Homomorphic encryption could be in widespread use as soon as the next few years, according to Ronen Levy, senior manager for IBM’s Cloud Security & Privacy Technologies Department, and Omri Soceanu, AI Security Group manager at IBM.  However, there are still challenges to be overcome.

“There are three main inhibitors for widespread adoption of homomorphic encryption — performance, consumability, and standardization,” according to Levy. “The main inhibitor, by far, is performance. Homomorphic encryption comes with some latency and storage overheads. FHE hardware acceleration will be critical to solving these issues, as well as algorithmic and cryptographic solutions, but without the necessary expertise it can be quite challenging.”

An additional issue is that most consumers of HE technology, such as data scientists and application developers, do not possess deep cryptographic skills, HE solutions that are designed for cryptographers can be impractical. A few HE solutions require algorithmic and cryptographic expertise that inhibit adoption by those who lack these skills.

Finally, there is a lack of standardization. “Homomorphic encryption is in the process of being standardized,” said Soceanu. “But until it is fully standardized, large organizations may be hesitant to adopt a cryptographic solution that has not been approved by standardization bodies.”

Once these issues are resolved, they predicted widespread use as soon as the next few years. “Performance is already practical for a variety of use cases, and as hardware solutions for homomorphic encryption become a reality, more use cases would become practical,” said Levy. “Consumability is addressed by creating more solutions, making it easier and hopefully as frictionless as possible to move analytics to homomorphic encryption. Additionally, standardization efforts are already in progress.”

A new attack and an old problem
Unfortunately, security never will be as simple as making users more aware of their surroundings. Otherwise, cold boot could be completely eliminated as a threat. Instead, it’s essential to keep up with conference talks and the published literature, as graduate students keep probing SRAM for vulnerabilities, hopefully one step ahead of genuine attackers.

For example, SRAM-related cold boot attacks originally targeted discrete SRAM. The reason is that it’s far more complicated to attack on-chip SRAM, which is isolated from external probing and has minimal intrinsic capacitance. However, in 2022, Jubayer Mahmod, then a graduate student at Virginia Tech and his advisor, associate professor Matthew Hicks, demonstrated what they dubbed “Volt Boot,” a new method that could penetrate on-chip SRAM. According to their paper, “Volt Boot leverages asymmetrical power states (e.g., on vs. off) to force SRAM state retention across power cycles, eliminating the need for traditional cold boot attack enablers, such as low-temperature or intrinsic data retention time…Unlike other forms of SRAM data retention attacks, Volt Boot retrieves data with 100% accuracy — without any complex post-processing.”

Conclusion
While scientists and engineers continue to identify vulnerabilities and develop security solutions, decisions about how much security to include in a design is an economic one. Cost vs. risk is a complex formula that depends on the end application, the impact of a breach, and the likelihood that an attack will occur.

“It’s like insurance,” said Kawaguchi. “Security engineers and people like us who are trying to promote security solutions get frustrated because, similar to insurance pitches, people respond with skepticism. ‘Why would I need it? That problem has never happened before.’ Engineers have a hard time convincing their managers to spend that extra dollar on the costs because of this ‘it-never-happened-before’ attitude. In the end, there are compromises. Yet ultimately, it’s going to cost manufacturers a lot of money when suddenly there’s a deluge of demands to fix this situation right away.”

References

  1. S. Skorobogatov, “Low temperature data remanence in static RAM”, Technical report UCAM-CL-TR-536, University of Cambridge Computer Laboratory, June 2002.
  2. Han, SJ., Han, JK., Yun, GJ. et al. Ultra-fast data sanitization of SRAM by back-biasing to resist a cold boot attack. Sci Rep 12, 35 (2022). https://doi.org/10.1038/s41598-021-03994-2

The post SRAM Security Concerns Grow appeared first on Semiconductor Engineering.

Fundamental Issues In Computer Vision Still Unresolved

Given computer vision’s place as the cornerstone of an increasing number of applications from ADAS to medical diagnosis and robotics, it is critical that its weak points be mitigated, such as the ability to identify corner cases or if algorithms are trained on shallow datasets. While well-known bloopers are often the result of human decisions, there are also fundamental technical issues that require further research.

“Computer vision” and “machine vision” were once used nearly interchangeably, with machine vision most often referring to the hardware embodiment of vision, such as in robots. Computer vision (CV), which started as the academic amalgam of neuroscience and AI research, has now become the dominant idea and preferred term.

“In today’s world, even the robotics people now call it computer vision,” said Jay Pathak, director, software development at Ansys. “The classical computer vision that used to happen outside of deep learning has been completely superseded. In terms of the success of AI, computer vision has a proven track record. Anytime self-driving is involved, any kind of robot that is doing work — its ability to perceive and take action — that’s all driven by deep learning.”

The original intent of CV was to replicate the power and versatility of human vision. Because vision is such a basic sense, the problem seemed like it would be far easier than higher-order cognitive challenges, like playing chess. Indeed, in the canonical anecdote about the field’s initial naïve optimism, Marvin Minsky, co-founder of the MIT AI Lab, having forgotten to include a visual system in a robot, assigned the task to undergraduates. But instead of being quick to solve, the problem consumed a generation of researchers.

Both academic and industry researchers work on problems that roughly can be split into three categories:

  • Image capture: The realm of digital cameras and sensors. It may use AI for refinements or it may rely on established software and hardware.
  • Image classification/detection: A subset of AI/ML that uses image datasets as training material to build models for visual recognition.
  • Image generation: The most recent work, which uses tools like LLMs to create novel images, and with the breakthrough demonstration of OpenAI’s Sora, even photorealistic videos.

Each one alone has spawned dozens of PhD dissertations and industry patents. Image classification/detection, the primary focus of this article, underlies ADAS, as well as many inspection applications.

The change from lab projects to everyday uses came as researchers switched from rules-based systems that simulated visual processing as a series of if/then statements (if red and round, then apple) to neural networks (NNs), in which computers learned to derive salient features by training on image datasets. NNs are basically layered graphs. The earliest model, 1943’s Perceptron, was a one-layer simulation of a biological neuron, which is one element in a vast network of interconnecting brain cells. Neurons have inputs (dendrites) and outputs (axons), driven by electrical and chemical signaling. The Perceptron and its descendant neural networks emulated the form but skipped the chemistry, instead focusing on electrical signals with algorithms that weighted input values. Over the decades, researchers refined different forms of neural nets with vastly increased inputs and layers, eventually becoming the deep learning networks that underlie the current advances in AI.

The most recent forms of these network models are convolutional neural networks (CNNs) and transformers. In highly simplified terms, the primary difference between them is that CNNs are very good at distinguishing local features, while transformers perceive a more globalized picture.

Thus, transformers are a natural evolution from CNNs and recurrent neural networks, as well as long short-term memory approaches (RNNs/LSTMs), according to Gordon Cooper, product marketing manager for Synopsys’ embedded vision processor family.

“You get more accuracy at the expense of more computations and parameters. More data movement, therefore more power,” said Cooper. “But there are cases where accuracy is the most important metric for a computer vision application. Pedestrian detection comes to mind. While some vision designs still will be well served with CNNs, some of our customers have determined they are moving completely to transformers. Ten years ago, some embedded vision applications that used DSPs moved to NNs, but there remains a need for both NNs and DSPs in a vision system. Developers still need a good handle on both technologies and are better served to find a vendor that can provide a combined solution.”

The emergence of CNN-based neural networks began supplanting traditional CV techniques for object detection and recognition.

“While first implemented using hardwired CNN accelerator hardware blocks, many of those CNN techniques then quickly migrated to programmable solutions on software-driven NPUs and GPNPUs,” said Aman Sikka, chief architect at Quadric.

Two parallel trends continue to reshape CV systems. “The first is that transformer networks for object detection and recognition, with greater accuracy and usability than their convolution-based predecessors, are beginning to leave the theoretical labs and enter production service in devices,” Sikka explained. “The second is that CV experts are reinventing the classical ISP functions with NN and transformer-based models that offer superior results. Thus, we’ve seen waves of ISP functionality migrating first from pure hardwired to C++ algorithmic form, and now into advanced ML network formats, with a modern design today in 2024 consisting of numerous machine-learning models working together.”

CV for inspection
While CV is well-known for its essential role in ADAS, another primary application is inspection. CV has helped detect everything from cancer tumors to manufacturing errors, or in the case of IBM’s productized research, critical flaws in the built environment. For example, a drone equipped with the IBM system could check if a bridge had cracks, a far safer and more precise way to perform visual inspection than having a human climb to dangerous heights.

By combining visual transformers with self-supervised learning, the annotation requirement is vastly reduced. In addition, the company has introduced a new process named “visual prompting,” where the AI can be taught to make the correct distinctions with limited supervision by using “in-context learning,” such as a scribble as a prompt. The optimal end result is that it should be able to respond to LLM-like prompts, such as “find all six-inch cracks.”

“Even if it makes mistakes and needs the help of human annotations, you’re doing far less labeling work than you would with traditional CNNs, where you’d have to do hundreds if not thousands of labels,” said Jayant Kalagnanam, director, AI applications at IBM Research.

Beware the humans
Ideally, domain-specific datasets should increase the accuracy of identification. They are often created by expanding on foundation models already trained on general datasets, such as ImageNet. Both types of datasets are subject to human and technical biases. Google’s infamous racial identification gaffes resulted from both technical issues and subsequent human overcorrections.

Meanwhile, IBM was working on infrastructure identification, and the company’s experience of getting its model to correctly identify cracks, including the problem of having too many images of one kind of defect, suggests a potential solution to the bias problem, which is to allow the inclusion of contradictory annotations.

“Everybody who is not a civil engineer can easily say what a crack is,” said Cristiano Malossi, IBM principal research scientist. “Surprisingly, when we discuss which crack has to be repaired with domain experts, the amount of disagreement is very high because they’re taking different considerations into account and, as a result, they come to different conclusions. For a model, this means if there’s ambiguity in the annotations, it may be because the annotations have been done by multiple people, which may actually have the advantage of introducing less bias.”

Fig.1 IBM’s Self-supervised learning model. Source: IBM

Fig. 1: IBM’s Self-supervised learning model. Source: IBM

Corner cases and other challenges to accuracy
The true image dataset is infinity, which in practical terms leaves most computer vision systems vulnerable to corner cases, potentially with fatal results, noted Alan Yuille, Bloomberg distinguished professor of cognitive science and computer science at Johns Hopkins University.

“So-called ‘corner cases’ are rare events that likely aren’t included in the dataset and may not even happen in everyday life,” said Yuille. “Unfortunately, all datasets have biases, and algorithms aren’t necessarily going to generalize to data that differs from the datasets they’re trained on. And one thing we have found with deep nets is if there is any bias in the dataset, the deep nets are wonderful at finding it and exploiting it.”

Thus, corner cases remain a problem to watch for. “A classic example is the idea of a baby in the road. If you’re training a car, you’re typically not going to have many examples of images with babies in the road, but you definitely want your car to stop if it sees a baby,” said Yuille. “If the companies are working in constrained domains, and they’re very careful about it, that’s not necessarily going to be a problem for them. But if the dataset is in any way biased, the algorithms may exploit the biases and corner cases, and may not be able to detect them, even if they may be of critical importance.”

This includes instances, such as real-world weather conditions, where an image may be partly occluded. “In academic cases, you could have algorithms that when evaluated on standard datasets like ImageNet are getting almost perfect results, but then you can give them an image which is occluded, for example, by a heavy rain,” he said. “In cases like that, the algorithms may fail to work, even if they work very well under normal weather conditions. A term for this is ‘out of domain.’ So you train in one domain and that may be cars in nice weather conditions, you test in out of domain, where there haven’t been many training images, and the algorithms would fail.”

The underlying reasons go back to the fundamental challenge of trying to replicate a human brain’s visual processing in a computer system.

“Objects are three-dimensional entities. Humans have this type of knowledge, and one reason for that is humans learn in a very different way than machine learning AI algorithms,” Yuille said. “Humans learn over a period of several years, where they don’t only see objects. They play with them, they touch them, they taste them, they throw them around.”

By contrast, current algorithms do not have that type of knowledge.

“They are trained as classifiers,” said Yuille. “They are trained to take images and output a class label — object one, object two, etc. They are not trained to estimate the 3D structure of objects. They have some sort of implicit knowledge of some aspects of 3D, but they don’t have it properly. That’s one reason why if you take some of those models, and you’ve contaminated the images in some way, the algorithms start degrading badly, because the vision community doesn’t have datasets of images with 3D ground truth. Only for humans, do we have datasets with 3D ground truth.”

Hardware implementation, challenges
The hardware side is becoming a bottleneck, as academics and industry work to resolve corner cases and create ever-more comprehensive and precise results. “The complexity of the operation behind the transformer is quadratic,“ said Malossi. “As a result, they don’t scale linearly with the size of the problem or the size of the model.“

While the situation might be improved with a more scalable iteration of transformers, for now progress has been stalled as the industry looks for more powerful hardware or any suitable hardware. “We’re at a point right now where progress in AI is actually being limited by the supply of silicon, which is why there’s so much demand, and tremendous growth in hardware companies delivering AI,” said Tony Chan Carusone, CTO of Alphawave Semi. “In the next year or two, you’re going to see more supply of these chips come online, which will fuel rapid progress, because that’s the only thing holding it back. The massive investments being made by hyperscalers is evidence about the backlogs in delivering silicon. People wouldn’t be lining up to write big checks unless there were very specific projects they had ready to run as soon as they get the silicon.”

As more AI silicon is developed, designers should think holistically about CV, since visual fidelity depends not only on sophisticated algorithms, but image capture by a chain of co-optimized hardware and software, according to Pulin Desai, group director of product marketing and management for Tensilica vision, radar, lidar, and communication DSPs at Cadence. “When you capture an image, you have to look at the full optical path. You may start with a camera, but you’ll likely also have radar and lidar, as well as different sensors. You have to ask questions like, ‘Do I have a good lens that can focus on the proper distance and capture the light? Can my sensor perform the DAC correctly? Will the light levels be accurate? Do I have enough dynamic range? Will noise cause the levels to shift?’ You have to have the right equipment and do a lot of pre-processing before you send what’s been captured to the AI. Remember, as you design, don’t think of it as a point solution. It’s an end-to-end solution. Every different system requires a different level of full path, starting from the lens to the sensor to the processing to the AI.”

One of the more important automotive CV applications is passenger monitoring, which can help reduce the tragedies of parents forgetting children who are strapped into child seats. But such systems depend on sensors, which can be challenged by noise to the point of being ineffective.

“You have to build a sensor so small it goes into your rearview mirror,” said Jayson Bethurem, vice president of marketing and business development at Flex Logix. “Then the issue becomes the conditions of your car. The car can have the sun shining right in your face, saturating everything, to the complete opposite, where it’s completely dark and the only light in the car is emitting off your dashboard. For that sensor to have that much dynamic range and the level of detail that it needs to have, that’s where noise creeps in, because you can’t build a sensor of that much dynamic range to be perfect. On the edges, or when it’s really dark or oversaturated bright, it’s losing quality. And those are sometimes the most dangerous times.”

Breaking into the black box
Finally, yet another serious concern for computer vision systems is the fact that they can’t be tested. Transformers, especially, are a notorious black box.

“We need to have algorithms that are more interpretable so that we can understand what’s going on inside them,” Yuille added. “AI will not be satisfactory till we move to a situation where we evaluate algorithms by being able to find the failure mode. In academia, and I hope companies are more careful, we test them on random samples. But if those random samples are biased in some way — and often they are — they may discount situations like the baby in the road, which don’t happen often. To find those issues, you’ve got to let your worst enemy test your algorithm and find the images that break it.”

Related Reading
Dealing With AI/ML Uncertainty
How neural network-based AI systems perform under the hood is currently unknown, but the industry is finding ways to live with a black box.

The post Fundamental Issues In Computer Vision Still Unresolved appeared first on Semiconductor Engineering.

Design Considerations In Photonics

Experts at the Table: Semiconductor Engineering sat down to talk about what CMOS and photonics engineers need to know to successfully collaborate, with James Pond, fellow at Ansys; Gilles Lamant, distinguished engineer at Cadence; and Mitch Heins, business development manager for photonic solutions at Synopsys. What follows are excerpts of that conversation. To view part one of this discussion, click here. Part two is here.


L-R: Ansys’s Pond, Cadence’s Lamant, Synopsys’ Heins

SE: What do engineers who have spent their careers in CMOS need to know about designing for photonics?

Lamant:  It’s hard, no illusion. I had good mentors, including both James and Mitch, so I actually did that transition. Ten years ago, I knew nearly nothing about photonics. It takes having good mentors who can help you. That’s the biggest thing. It’s not enough to just try the software on your own. In addition, having an RF background is very useful in many ways. Photonics is the multiplication of RF. In photonics, you have multiple modes. In RF, you tend to only consider one mode, but a lot of the theory behind photonics is very much a generalization of RF.

Heins: We try to make our photonics flow look as much as we can like our electronics flow. We try to take the last 30 to 40 years of learning in EDA and apply it to photonics. One thing we see a lot is that when people are coming right out of school in photonics, they don’t necessarily have a deep background in how to do IC design. There are a lot of things we’ve learned, like design rule checking, that we now take for granted. It’s like breathing. You’ve got to do it. Layout versus schematic, you’ve got to do it. Even circuit-level simulation. As CMOS veterans, you’d think, of course, you always simulate your circuit before you go to manufacture, but that’s not the case in photonics.

Lamant: Those people actually know photonics, but they don’t know how to create a system. This is a different type of challenge. People who know photonics, know how to make a device. They’re expert at that. But they have no idea how to take that device and bring it to a full system that they can sell. I see that in so many startups. It’s not to make the point for EDA software. They use free software. They use Klayout and all those things that they have access to in the university. But all of those tools are not part of the ecosystem of trying to make a system. They say, ‘We wrote a custom simulator to simulate our ring.’ But the question then is, ‘How do you simulate the driver for your ring that goes with it?’ I see many startups fail because they don’t have that ability to take it from academic thinking to production.

You have the electronics people trying to do photonics, they have some methodology background, and other things, but they have a gap in knowledge. Fortunately, they can get caught up, especially if they’re an analog designer or an RF designer. They can close that gap by talking to the right people. Unfortunately, the people who know photonics do not have the knowledge of how to make a full system out of it, and this is greatly hurting the photonics world.

Pond: I would agree. We have two worlds of engineers who have been coming together over the last decade or so. Those who came from an EDA background — electrical circuit design, especially RF — have probably had the easiest time. We’ve been doing better and better for them. Ten years ago there was nothing. Now, there’s a more traditional workflow that looks more like an EDA workflow. Still, they have a lot to learn. But the workflow, the cockpit, and so on, follows along with the EDA model.

In the other direction, maybe we haven’t done quite as good a job because people coming from a photonics background can be really thrown off by the scale and complexity of EDA tools. My impression, coming from photonics, is EDA tools have been developed over many decades. When that happens, you end up with tools that are incredibly powerful, but you wonder if they’d been developed more recently, maybe things wouldn’t be done this way. There’s a resistance on the photonic engineer side to dive into that world because there’s a lot to learn about the EDA workflows. People from photonics have to embrace and take on that EDA world, because, as Gilles says, it’s necessary, it really has to be done.

Heins:  Now, you’re seeing a ton of work going into how to apply AI to help folks bring these kinds of more complex flows under control. There’s so much to learn, but if AI can help you take care of the plumbing, if you will, you can advance much faster. We already extensively use AI for SoCs or packaged designs where you have tens and hundreds of billions of transistors. Photonics is a different vector. The signal itself is much more complex than electrical. The optimization that you have to go through is much more complex. But AI can help get a handle on that, so as we go forward, you’ll start to see these kinds of complexities simplified for people.

SE: Is there something analogous to error correction/parity checks in the photonics world?

Lamant: That can’t be analogized to photonics, because that’s about knowing the original signal and comparing it to the others. Once you have reconstituted your data, and it’s back to being a digital set of bits, then you have a parity check or different types of things that today have nothing to do with photonics because it’s the physical link. In physical links, you can do retiming or a lot of things, but the error correction happens independently, on both sides.

Heins: Tuning might be something closer to it. If my resonance frequencies are not as expected, can I detect that and then adjust for it? That happens a lot. You could think of those kinds of things as error correction.

Pond: Most of the kind of error correction we’re talking about is just using all the standard methods, whether you have an optical link or a copper link. But there are some really interesting things. We had a workflow, developed between Ansys and Cadence a few years ago on a PAM-4 system, where we did a driver simulation and the photonic link together. You look into shifting the timing of signals to compensate for different effects. If you look at the eye at different locations, it may look completely distorted and wrong, because you’re pre-compensating for an effect that’s going to come later through the photonic portion of the link. That’s one of the reasons why it’s important to be able to do the full system simulation. You can’t just independently optimize the driver electronics and the photonics. They have to be done together, so you can perform the signal correction work.

Heins: You do things like equalization. Dispersion is another one. You get different wavelengths traveling at different speeds, and we compensate for that. At the physical level, there are some corrections that do take place, depending on the kind of system you’re trying to make. If you’re in coherent systems, where path links matter, phase matters, that’s more like trying to make the circuit correct by construction, so that you don’t encounter problems.

That raises another issue, which is manufacturing variances. There, you’re back to doing lots of sensitivity analysis through Monte Carlo-type simulations, parameterized simulations, etc., where you’re trying to get a feel for the sensitivity of your device, to a shift that could occur, either through the manufacturing process or just as this system sits in its ecosystem of whatever’s around it. It’s not quite error correction, per se, but certainly trying to design for that is something we care about.

SE: Any concluding thoughts?

Lamant: There is a lot of wondering and pondering right now, but it’s also exciting. We’ve reached the point where photonics is here to stay and will be part of more and more things. Looking forward, the interesting question is where it will become part of the actual data processing. Sensing is a terrific application for photonics, but I am not totally sold on the actual data processing. I’m not even using the word “computing” here, because processing and computing are very different things. Photonics is probably never going to be doing general computing. It may be doing specialized niche, like a Fourier transform-type of processing, and it needs to be part of a system.

Heins: It comes down to two things. What will really happen with quantum computing? And will quantum computing use photonics? A lot of people are looking at photonics for quantum computing because you can do a lot more of that work at room temperature than at 4 Kelvin or something like that — not all of it, but big chunks of it. If quantum computing actually becomes more than prototypes, and photonics is a big part of that, that could shift the answer. The other big issue in compute is we don’t have memory for photonics. If someone makes a breakthrough where suddenly states can be stored in some fashion, then all bets are off and everything changes again. But at this point, I don’t see anything promising.

One of the biggest challenges we have going forward for the whole ecosystem, in general, is lack of standards in this space, which makes interoperability between tools from our companies very difficult. The signal in photonics is very complex. It’s actually complex math, with real and imaginary parts. There are a lot of extra things that we have to take into account, and a lot of times we don’t even have common nomenclature or agreement on metrics and how to measure things. This is going to take time, but it’s being pushed by customers driving us to work together. For example, chiplets are great for photonics because a photonic IC is a chiplet. But all of a sudden, now you’re in a mixed domain, multi-physics type of environment, and there are some huge challenges to make that all work together. We have a pretty good handle on system functional verification, design-for-test, and all these things in the electronic IC world. In photonics, we’ve got a lot of work to do.

Pond: For me, it’s been exciting. I’ve been doing this for more than 20 years. In 2022, when I saw the first product with fibers actually coming out of the package, that was the dream from 20 years back. It took a lot of effort to get there. Things have been maturing very fast, especially in the last decade. That’s really promising from an EDA/EPDA-type of workflow perspective. The datacoms, as we’ve all said, are proven and not going to go away, given the investment from foundries, which is going to continue and even accelerate. It’s exciting times for all these other applications, from sensing to quantum and so on. There’s a lot of innovation possible. It’s not clear what’s going to be a winner yet and what’s not, but it’s a great time to be in photonics.

Read parts one and two of the discussion:
Photonics: The Former And Future Solution
Twenty-five years ago, photonics was supposed to be the future of high technology. Has that future finally arrived?
The Challenges Of Working With Photonics
From curvilinear designs to thermal vulnerabilities, what engineers need to know about the advantages and disadvantages of photonics

The post Design Considerations In Photonics appeared first on Semiconductor Engineering.

❌