FreshRSS

Zobrazení pro čtení

Jsou dostupné nové články, klikněte pro obnovení stránky.

Starliner spacesuits not compatible with SpaceX Dragon

Starliner capsule. Image: NASA

Two months into what was scheduled to be an eight-day mission, we learn that spacesuit compatibility problems are also keeping NASA's astronauts stuck in space.

I missed something in the recent discussion about the possibility of Starliner's stranded crew returning to Earth on a SpaceX Dragon. — Read the rest

The post Starliner spacesuits not compatible with SpaceX Dragon appeared first on Boing Boing.

NASA likely to significantly delay the launch of Crew 9 due to Starliner issues

Boeing's Starliner spacecraft is lifted to be placed atop an Atlas V rocket for its first crewed launch.

Enlarge / Boeing's Starliner spacecraft is lifted to be placed atop an Atlas V rocket for its first crewed launch. (credit: United Launch Alliance)

NASA is planning to significantly delay the launch of the Crew 9 mission to the International Space Station due to ongoing concerns about the Starliner spacecraft currently attached to the station.

While the space agency has not said anything publicly, sources say NASA should announce the decision this week. Officials are contemplating moving the Crew-9 mission from its current date of August 18 to September 24, a significant slip.

Nominally, this Crew Dragon mission will carry NASA astronauts Zena Cardman, spacecraft commander; Nick Hague, pilot; and Stephanie Wilson, mission specialist; as well as Roscosmos cosmonaut Alexander Gorbunov, for a six-month journey to the space station. However, NASA has been considering alternatives to the crew lineup—possibly launching with two astronauts instead of four—due to ongoing discussions about the viability of Starliner to safely return astronauts Butch Wilmore and Suni Williams to Earth.

Read 13 remaining paragraphs | Comments

Rocket Report: Falcon 9 is back; Starship could be recovered off Australia

Welcome to Edition 7.05 of the Rocket Report! The Federal Aviation Administration grounded SpaceX's Falcon 9 rocket for 15 days after a rare failure of its upper stage earlier this month. The FAA gave the green light for Falcon 9 to return to flight July 25, and within a couple of days, SpaceX successfully launched three missions from three launch pads. There's a lot on Falcon 9's to-do list, so we expect SpaceX to quickly return to form with several flights per week.

As always, we welcome reader submissions. If you don't want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Big delay for a reusable rocket testbed. The French space agency, CNES, has revealed that the inaugural test flight of its Callisto reusable rocket demonstrator will not take place until late 2025 or early 2026, European Spaceflight reports. CNES unveiled an updated website for the Callisto rocket program earlier this month, showing the test rocket has been delayed from a debut launch later this year to until late 2025 or early 2026. The Callisto rocket is designed to test techniques and technologies required for reusable rockets, such as vertical takeoff and vertical landing, with suborbital flights from the Guiana Space Center in South America.

Read 19 remaining paragraphs | Comments

NASA says it is “evaluating all options” for the safe return of Starliner crew

Boeing's Starliner spacecraft is seen docked at the International Space Station on June 13.

Enlarge / Boeing's Starliner spacecraft is seen docked at the International Space Station on June 13. (credit: NASA)

It has now been eight weeks since Boeing's Starliner spacecraft launched into orbit on an Atlas V rocket, bound for the International Space Station. At the time NASA officials said the two crew members, Butch Wilmore and Suni Williams, could return to Earth as soon as June 14, just eight days later.

Yes, there had been some problems on Starliner's ride to the space station that involved helium leaks and failing thrusters. But officials said they were relatively minor and sought to downplay them. "Those are pretty small, really, issues to deal with," Mark Nappi, vice president and manager of Boeing's Commercial Crew Program, said during a post-docking news conference. "We’ll figure them out for the next mission. I don’t see these as significant at all."

But days turned to weeks, and weeks turned to months as NASA and Boeing continued to study the two technical problems. Of these issues, the more pressing concern was the failure of multiple reaction control system thrusters that are essential to steering Starliner during its departure from the space station and setting up a critical engine burn to enter Earth's atmosphere.

Read 10 remaining paragraphs | Comments

Starliner return delayed again, this time indefinitely

Starliner capsule. Image: NASA

NASA's troubled Starliner spacecraft arrived at the International Space Station on June 5th, after two previous attempts were scrubbed due to issues with the launch system and thrusters. The helium leaks that caused the second attempt to be scrubbed were known to persist during the successful launch, and additional leaks were discovered after docking. — Read the rest

The post Starliner return delayed again, this time indefinitely appeared first on Boing Boing.

Boeing’s Starliner capsule poised for second try at first astronaut flight

Boeing's Starliner spacecraft sits on top of a United Launch Alliance Atlas V rocket at Cape Canaveral Space Force Station, Florida.

Enlarge / Boeing's Starliner spacecraft sits on top of a United Launch Alliance Atlas V rocket at Cape Canaveral Space Force Station, Florida. (credit: NASA/Joel Kowsky)

NASA and Boeing officials are ready for a second attempt to launch the first crew test flight on the Starliner spacecraft Saturday from Cape Canaveral Space Force Station, Florida.

Liftoff of Boeing's Starliner capsuled atop a United Launch Alliance Atlas V rocket is set for 12:25 pm EDT (16:25 UTC). NASA commander Butch Wilmore and pilot Suni Williams, both veteran astronauts, will take the Starliner spacecraft on its first trip into low-Earth orbit with a crew on board.

The first crew flight on a new spacecraft is not an everyday event. Starliner is the sixth orbital-class crew spacecraft in the history of the US space program, following Mercury, Gemini, Apollo, the space shuttle, and SpaceX's Crew Dragon. NASA signed a $4.2 billion contract with Boeing in 2014 to develop Starliner, but the project is running years behind schedule and has cost Boeing nearly $1.5 billion in cost overruns. SpaceX, meanwhile, won a contract at the same time as Boeing and started launching astronauts on the Crew Dragon four years ago this week.

Read 34 remaining paragraphs | Comments

Commercial Space Stations Approach Launch Phase



A changing of the guard in space stations is on the horizon as private companies work toward providing new opportunities for science, commerce, and tourism in outer space.

Blue Origin is one of a number of private-sector actors aiming to harbor commercial activities in low Earth orbit (LEO) as the creaking and leaking International Space Station (ISS) approaches its drawdown. Partners in Blue Origin’s Orbital Reef program, including firms Redwire, Sierra Space, and Boeing, are each reporting progress in their respective components of the program. The collaboration itself may not be on such strong ground. Such endeavors may also end up slowed and controlled by regulation so far absent from many new, commercial areas of space.

Orbital Reef recently aced testing milestones for its critical life support system, with assistance from NASA. These included hitting targets for trace contaminant control, water contaminant oxidation, urine water recovery, and water tank tests—all of which are required to operate effectively and efficiently to enable finite resources to keep delicate human beings alive in orbit for long timeframes.

Blue Origin, founded by Jeff Bezos, is characteristically tight-lipped on its progress and challenges and declined to provide further comment on progress beyond NASA’s life-support press statement.

The initiative is backed by NASA’s Commercial LEO Destinations (CLD) program, through which the agency is providing funding to encourage the private sector to build space habitats. NASA may also be the main client starting out, although the wider goal is to foster a sustainable commercial presence in LEO.

The Space-Based Road Ahead

The challenge Orbital Reef faces is considerable: reimagining successful earthbound technologies—such as regenerative life-support systems, expandable habitats and 3D printing—but now in orbit, on a commercially viable platform. The technologies must also adhere to unforgiving constraints of getting mass and volume to space, and operating on a significantly reduced budget compared to earlier national space station programs.

Add to that autonomy and redundancy that so many mission-critical functions will demand, as well as high-bandwidth communications required to return data and allow streaming and connectivity for visitors.

In one recent step forward for Orbital Reef, Sierra Space, headquartered in Louisville, Colo., performed an Ultimate Burst Pressure (UBP) test on its architecture in January. This involved inflating, to the point of failure, the woven fabric pressure shell—including Vectran, a fabric that becomes rigid and stronger than steel when pressurized on orbit—for its Large Integrated Flexible Environment (LIFE) habitat. Sierra’s test reached 530,000 pascals (77 pounds per square inch) before it burst—marking a successful failure that far surpassed NASA’s recommended safety level of 419,200 Pa (60.8 psi).

Notably, the test article was 300 cubic meters in volume, or one-third the volume of ISS—a megaproject constructed by some 15 countries over more than 30 launches. LIFE will contain 10 crew cabins along with living, galley, and gym areas. This is expected to form part of the modular Orbital Reef complex. The company stated last year it aimed to launch a pathfinder version of LIFE around the end of 2026.

Inflating and Expanding Expectations

Whereas the size of ISS modules and those of China’s new, three-module Tiangong space station, constructed in 2021–22, was dependent on the size of the payload bay or fairing of the shuttle or rocket doing the launching, using expandable quarters allows Orbital Reef to offer habitable areas multiples (in this case five times) greater than the volume of the 5-meter rocket fairing to be used to transport the system to orbit.

Other modules will include Node, with an airlock and docking facilities, also developed by Sierra Space, as well as a spherical Core module developed by Blue Origin. Finally, Boeing is developing a research module, which will include a science cupola, akin to that on the ISS, external payload facilities, and a series of laboratories.

Orbital Reef will be relying on some technologies developed for and spun off from the ISS project, which was completed in 2011 at a cost of US $100 billion. The new station will be operating on fractions of such budgets, with Blue Origin awarded $130 million of a total $415.6 million given to three companies in 2021.

“NASA is using a two-phase strategy to, first, support the development of commercial destinations and, secondly, enable the agency to purchase services as one of many customers” says NASA spokesperson Anna Schneider, at NASA’s Johnson Space Center.

For instance, Northrop Grumman is working on its Persistent Platform to provide autonomous and robotic capabilities for commercial science and manufacturing capabilities in LEO.

Such initiatives could face politically constructed hurdles, however. Last year, some industry advocates opposed a White House proposal that would see new commercial space activities such as space stations regulated.

Meanwhile, the European Space Agency (ESA) signed a memorandum of understanding in late 2023 with Airbus and Voyager Space, headquartered in Denver, which would give ESA access to a planned Starlab space station after the ISS is transitioned out. That two-module orbital outpost will also be inflatable and is now expected to be launched in 2028.

China also is exploring opening its Tiangong station to commercial activities, including its own version of NASA’s commercial cargo and extending the station with new modules—and new competition for the world’s emerging space station sector.

SpaceX Edges Closer to the Moon

A photo of a space ship | Photo: Creative Market
Joanna Andreasson/DALL-E4

In the June 2024 issue, we explore the ways that artificial intelligence is shaping our economy and culture. The stories and art are about AI—and occasionally by AI. (Throughout the issue, we have rendered all text generated by AI-powered tools in blue.) To read the rest of the issue, go here.

ARTEMIS II is a crewed moon flyby mission, the first in a series of missions meant to get American astronauts back to the moon and eventually to Mars. In early January, NASA announced that it would be delayed until September 2025—a year later than originally planned. The announcement came after Lockheed Martin's Orion capsule, which will carry the crew through space, burned more than anticipated during a reentry test. The project continues to balloon in price with seemingly endless delays.

The latest delay means Artemis III, a crewed lunar landing mission, will be delayed until 2026—at least. It seems doubtful NASA will be able to apply what it learns from Artemis II to an Artemis III mission in less than a year.

Orion is not the only element that could hold up Artemis indefinitely. The later Artemis missions are relying on SpaceX's Starship—but Federal Aviation Administration (FAA) investigations can add weeks or months between Starship tests. So far SpaceX has been able to test the spacecraft three times, most recently on March 14.

The test did not completely fulfill its mission as intended but was still deemed a success by both SpaceX founder Elon Musk and NASA Administrator Bill Nelson. Both rocket and spacecraft were supposed to have controlled splashdowns in wide-open waters, but the rocket disintegrated about 1,500 feet over the Gulf of Mexico, while the separate Starship spacecraft burned up during reentry.

The good news is that none of the previous issues flagged by the FAA occurred on this latest test. But with every rocket mishap, the FAA will open a new investigation, with new parameters for SpaceX to meet before the next test.

In January, Jessica Jensen, a vice president at SpaceX, told NASA's Nelson that the company will need "ten-ish" tests to get the rocket perfect for Artemis III. It took the FAA two years to approve the first test of Starship and its second test wasn't approved until nearly five months later. The FAA investigation into the second Starship flight test (which resulted in a successful separation of rocket and spacecraft but ended in both exploding soon after) took more than three months.

Musk is hoping to run six Starship test launches this year, but there's no telling how long the FAA will drag its feet between tests. Each FAA delay is another delay for SpaceX, Artemis, and man's return to the moon.


(Illustration: Joanna Andreasson/DALL-E4)
  • What we asked for:
    A photo of the Artemis II rocket on launchpad in an open landscape at dawn from slightly above
  • What DALL-E says it gave us:
    Here's the Artemis II rocket on the launchpad in an open landscape at dawn, with the first light of the day illuminating the scene, captured from a slight elevation.

Launch Approved? Not So Fast, Says Sluggish FAA

Reason asked Claude 3 Sonnet to write an article about the same topic as the human-written article above. All AI-generated text is shown in blue. Read more about what we asked for.
By Claude 3 Sonnet

Most Americans are eager to see NASA astronauts return to the moon and push humanity's boundaries with future exploration of Mars. But those sky-high ambitions are being severely grounded by the plodding pace of rocket launch approvals from the Federal Aviation Administration (FAA).

Every vehicle soaring into space must first secure licensing from the FAA, an oversight process intended to ensure safety. For SpaceX, the current industry leader launching crews and payloads roughly every four days, the government's bureaucratic inertia has become a highly problematic bottleneck.

This red tape has directly impacted testing of SpaceX's Starship, the vehicle that NASA is relying upon to carry cargo and crew for the Artemis program's later missions to the lunar surface. To date, there have been three orbital test flights of the massive rocket–in April and November 2023, and March of this year.

Each of those Starship test launches prompted the FAA to launch a mishap investigation stalling subsequent flights. After the first test in April 2023, the FAA probe lasted five months before approving the next launch[1]. The investigation following November's flight dragged on over three months[2]. Incredibly, it took the FAA more than two years just to greenlight that initial Starship test back in 2023[3].

Jessica Jensen, a SpaceX vice president, has stated that approximately "10-ish" Starship test launches are needed before the system will be proven and ready to support the crewed Artemis III moon mission[4]. At the FAA's current pace of reviewing and approving those test flights, NASA's hope of returning Americans to the lunar surface by 2025 is looking increasingly unlikely.

"We'd very much like the government to be able to move as quickly as we are," Tim Hughes, SpaceX's senior vice president, told the Washington Post[5]. "If you're able to build a rocket faster than the government can regulate it, that's upside down, and that needs to be addressed. So we think some regulatory reforms are needed."

SpaceX has suggested doubling the FAA's licensing staff as one possible solution. At this point, any efforts to "streamline the cumbersome approval process," as Hughes put it, would help accelerate both the private space industry and NASA's exploration roadmap[5].

"Next year could be a pretty dynamic time with lots of providers in spaceflight," a SpaceX official told Ars Technica[6]. But unless the FAA addresses its pacing problems soon, the agency will continue irreparably hindering those new aerospace opportunities—and keep kicking the can down the road on NASA's bid to take astronauts farther into the cosmos.

CITATION KEY:
[1] SpaceX internal record
[2] FAA public statement, 
Dec 2023
[3] FAA memo, April 2023
[4] Jensen quote to 
NASA Admin.
[5] Hughes interview, Washington Post
[6] SpaceX statement to 
Ars Technica.

CLAUDE 3 SONNET is a free large language model developed by Anthropic, an AI startup. 

  • What we asked for:
    An article about FAA mishap investigations delaying launch tests of SpaceX's Starship, and, as a result, delaying NASA's Artemis missions and man's return to the moon.
  • What Claude asked for and we provided:
    1. What specific SpaceX mishaps or incidents is the FAA investigating that are causing delays?

    2. How much of a delay are we talking about for Starship test launches and the Artemis missions?
    3. Do you have any quotes from officials at SpaceX, NASA, or the FAA commenting on the situation?
  • What else we gave Claude:
    1. A writing sample for analysis and replication: Natalie Dowzicky's October 2023 reason.com article headlined "SpaceX: FAA Is Slowing Progress to the Moon"

    2. For the headline: six headlines from the TOPICS section of the May issue.

—JASON RUSSELL

The post SpaceX Edges Closer to the Moon appeared first on Reason.com.

Rocket Report: Astroscale chases down dead rocket; Ariane 6 on the pad

This image captured by Astroscale's ADRAS-J satellite shows the discarded upper stage from a Japanese H-IIA rocket.

Enlarge / This image captured by Astroscale's ADRAS-J satellite shows the discarded upper stage from a Japanese H-IIA rocket. (credit: Astroscale)

Welcome to Edition 6.42 of the Rocket Report! Several major missions are set for launch in the next few months. These include the first crew flight on Boeing's Starliner spacecraft, set for liftoff on May 6, and the next test flight of SpaceX's Starship rocket, which could happen before the end of May. Perhaps as soon as early summer, SpaceX could launch the Polaris Dawn mission with four private astronauts, who will perform the first fully commercial spacewalk in orbit. In June or July, Europe's new Ariane 6 rocket is slated to launch for the first time. Rest assured, Ars will have it all covered.

As always, we welcome reader submissions, and if you don't want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

German rocket arrives at Scottish spaceport. Rocket Factory Augsburg has delivered a booster for its privately developed RFA One rocket to SaxaVord Spaceport in Scotland, the company announced on X. The first stage for the RFA One rocket was installed on its launch pad at SaxaVord to undergo preparations for a static fire test. The booster arrived at the Scottish launch site with five of its kerosene-fueled Helix engines. The remaining four Helix engines, for a total of nine, will be fitted to the RFA One booster at SaxaVord, the company said.

Read 20 remaining paragraphs | Comments

NASA says Artemis II report by its inspector general is unhelpful and redundant

Orion, the Moon, and Earth in one photo in December 2022.

Enlarge / Orion, the Moon, and Earth in one photo in December 2022. (credit: NASA)

NASA's acting inspector general, George A. Scott, released a report Wednesday that provided an assessment of NASA's readiness to launch the Artemis II mission next year. This is an important flight for the space agency because, while the crew of four will not land on the Moon, it will be the first time humans have flown into deep space in more than half a century.

The report did not contain any huge surprises. In recent months the biggest hurdle for the Artemis II mission has been the performance of the heat shield that protects the Orion spacecraft during its fiery reentry at more than 25,000 mph from the Moon.

Although NASA downplayed the heat shield issue in the immediate aftermath of the uncrewed Artemis I flight in late 2022, it is clear that the unexpected damage and charring during that uncrewed mission is a significant concern. As recently as last week, Amit Kshatriya, who oversees development for the Artemis missions in NASA's exploration division, said the agency is still looking for the root cause of the problem.

Read 15 remaining paragraphs | Comments

Moon of Jupiter has a lake of lava

NASA's Juno spacecraft has been orbiting Jupiter since 2016. The craft's primary missions involving studies of the gas giant itself were completed in 2018, but the project was extended to include the moons of Ganymede, Europa, and Io. Recently, the craft passed within 930 miles of the surface of Io and captured close-up images of the moon's highly volcanic northern latitudes. — Read the rest

The post Moon of Jupiter has a lake of lava appeared first on Boing Boing.

50 Years Later, This Apollo-Era Antenna Still Talks to Voyager 2



For more than 50 years, Deep Space Station 43 has been an invaluable tool for space probes as they explore our solar system and push into the beyond. The DSS-43 radio antenna, located at the Canberra Deep Space Communication Complex, near Canberra, Australia, keeps open the line of communication between humans and probes during NASA missions.

Today more than 40 percent of all data retrieved by celestial explorers, including Voyagers, New Horizons, and the Mars Curiosity rover, comes through DSS-43.

“As Australia’s largest antenna, DSS-43 has provided two-way communication with dozens of robotic spacecraft,” IEEE President-Elect Kathleen Kramer said during a ceremony where the antenna was recognized as an IEEE Milestone. It has supported missions, Kramer noted, “from the Apollo program and NASA’s Mars exploration rovers such as Spirit and Opportunity to the Voyagers’ grand tour of the solar system.

“In fact,” she said, “it is the only antenna remaining on Earth capable of communicating with Voyager 2.”

Why NASA needed DSS-43

Maintaining two-way contact with spacecraft hurtling billions of kilometers away across the solar system is no mean feat. Researchers at NASA’s Jet Propulsion Laboratory, in Pasadena, Calif., knew that communication with distant space probes would require a dish antenna with unprecedented accuracy. In 1964 they built DSS-42—DSS-43’s predecessor—to support NASA’s Mariner 4 spacecraft as it performed the first-ever successful flyby of Mars in July 1965. The antenna had a 26-meter-diameter dish. Along with two other antennas at JPL and in Spain, DSS-42 obtained the first close-up images of Mars. DSS-42 was retired in 2000.

NASA engineers predicted that to carry out missions beyond Mars, the space agency needed more sensitive antennas. So in 1969 they began work on DSS-43, which has a 64-meter-diameter dish.

DSS-43 was brought online in December 1972—just in time to receive video and audio transmissions sent by Apollo 17 from the surface of the moon. It had greater reach and sensitivity than DSS-42 even after 42’s dish was upgraded in the early 1980s.

The gap between the two antennas’ capabilities widened in 1987, when DSS-43 was equipped with a 70-meter dish in anticipation of Voyager 2’s 1989 encounter with the planet Neptune.

DSS-43 has been indispensable in maintaining contact with the deep-space probe ever since.

The dish’s size isn’t its only remarkable feature. The dish’s manufacturer took great pains to ensure that its surface had no bumps or rough spots. The smoother the dish surface, the better it is at focusing incident waves onto the signal detector so there’s a higher signal-to-noise ratio.

DSS-43 boasts a pointing accuracy of 0.005 degrees (18 arc seconds)—which is important for ensuring that it is pointed directly at the receiver on a distant spacecraft. Voyager 2 broadcasts using a 23-watt radio. But by the time the signals traverse the multibillion-kilometer distance from the heliopause to Earth, their power has faded to a level 20 billion times weaker than what is needed to run a digital watch. Capturing every bit of the incident signals is crucial to gathering useful information from the transmissions.

The antenna has a transmitter capable of 400 kilowatts, with a beam width of 0.0038 degrees. Without the 1987 upgrade, signals sent from DSS-43 to a spacecraft venturing outside the solar system likely never would reach their target.

NASA’s Deep Space Network

The Canberra Deep Space Complex, where DSS-43 resides, is one of three such tracking stations operated by JPL. The other two are DSS-11 at the Goldstone Deep Space Communications Complex near Barstow, Calif., and DSS-63 at the Madrid Deep Space Communications Complex in Robledo de Chavela, Spain. Together, the facilities make up the Deep Space Network, which is the most sensitive scientific telecommunications system on the planet, according to NASA. At any given time, the network is tracking dozens of spacecraft carrying out scientific missions. The three facilities are spaced about 120 degrees longitude apart. The strategic placement ensures that as the Earth rotates, at least one of the antennas has a line of sight to an object being tracked, at least for those close to the plane of the solar system.

But DSS-43 is the only member of the trio that can maintain contact with Voyager 2. Ever since its flyby of Neptune’s moon Triton in 1989, Voyager 2 has been on a trajectory below the plane of the planets, so that it no longer has a line of sight with any radio antennas in the Earth’s Northern Hemisphere.

To ensure that DSS-43 can still place the longest of long-distance calls, the antenna underwent a round of updates in 2020. A new X-band cone was installed. DSS-43 transmits radio signals in the X (8 to 12 gigahertz) and S (2 to 4 GHz) bands; it can receive signals in the X, S, L (1 to 2 GHz), and K (12 to 40 GHz) bands. The dish’s pointing accuracy also was tested and recertified.

Once the updates were completed, test commands were sent to Voyager 2. After about 37 hours, DSS-43 received a response from the space probe confirming it had received the call, and it executed the test commands with no issues.

DSS-43 is still relaying signals between Earth and Voyager 2, which passed the heliopause in 2018 and is now some 20 billion km from Earth.

a group of people smiling and standing around a plaque on a wooden stand with a large white pillar structure in the background [From left] IEEE Region 10 director Lance Fung, Kevin Furguson, IEEE President-Elect Kathleen Kramer, and Ambarish Natu, past chair of the IEEE Australian Capital Territory Section at the IEEE Milestone dedication ceremony held at the Canberra Deep Space Communication Complex in Australia. Furguson is the director of the complex.Ambarish Natu

Other important missions

DSS-43 has played a vital role in missions closer to Earth as well, including NASA’s Mars Science Laboratory mission. When the space agency sent Curiosity, a golf cart–size rover, to explore the Gale crater and Mount Sharp on Mars in 2011, DSS-43 tracked Curiosity as it made its nail-biting seven-minute descent into Mars’s atmosphere. It took roughly 20 minutes for radio signals to traverse the 320-million km distance between Mars and Earth, and then DSS-43 delivered the good news: The rover had landed safely and was operational.

“NASA plans to send future generations of astronauts from the Moon to Mars, and DSS-43 will play an important role as part of NASA’s Deep Space Network,” says Ambarish Natu, an IEEE senior member who is a past chair of the IEEE Australian Capital Territory (ACT) Section.

DSS-43 was honored with an IEEE Milestone in March during a ceremony held at the Canberra Deep Space Communication Complex.

“This is the second IEEE Milestone recognition given in Australia, and the first for ACT,” Lance Fung, IEEE Region 10 director, said during the ceremony. A plaque recognizing the technology is now displayed at the complex. It reads:

First operational in 1972 and later upgraded in 1987, Deep Space Station 43 (DSS-43) is a steerable parabolic antenna that supported the Apollo 17 lunar mission, Viking Mars landers, Pioneer and Mariner planetary probes, and Voyager’s encounters with Jupiter, Saturn, Uranus, and Neptune. Planning for many robotic and human missions to explore the solar system and beyond has included DSS-43 for critical communications and tracking in NASA’s Deep Space Network.

Administered by the IEEE History Center and supported by donors, the Milestone program recognizes outstanding technical developments around the world. The IEEE Australian Capital Territory Section sponsored the nomination.

NASA just unveiled the message plate to greet Jupiter's moon Europa

NASA's upcoming Europa Clipper mission will carry a unique artifact to Jupiter's moon Europa, blending science, technology, and art. The spacecraft is set to launch in October and will journey over 1.6 billion miles to orbit Jupiter, making multiple flybys of Europa. — Read the rest

The post NASA just unveiled the message plate to greet Jupiter's moon Europa appeared first on Boing Boing.

How to prevent biofilms in space

After exposure in space aboard the International Space Station, a new kind of surface treatment significantly reduced the growth of biofilms, scientists report. Biofilms are mats of microbial or fungal growth that can clog hoses or filters in water processing systems, or potentially cause illness in people.

In the experiment, researchers investigated a variety of surfaces treated in different ways and exposed to a bacteria called Pseudomonas aeruginosa, which is an opportunistic pathogen than can cause infections in humans, especially in hospitals. The surfaces were incubated for three days aboard the space station, starting in 2019. The results show that textured surfaces impregnated with a lubricant were highly successful at preventing biofilm growth during their long exposure in space. The findings are described in a paper in the journal Nature Microgravity, by Samantha McBride PhD ’20 and Kripa Varanasi of MIT, Pamela Flores and Luis Zea at the University of Colorado, and Jonathan Galakza at NASA Ames Research Center.

Clogs in water recovery system hoses aboard the ISS have been so severe at times, the hoses had to be sent back to Earth for cleaning and refurbishing. And while it isn’t known whether biofilms have directly contributed to astronaut illnesses, on Earth, biofilms are associated with 65 percent of microbial infections, and 80 percent of chronic infections, the researchers say.

One approach to preventing biofilms is to use surfaces coated with certain metals or oxides that kill microbes, but this approach can fail when a layer of dead microbes builds up on the surface and allows biofilm to form above it. But this was not the case with the liquid-infused surface that performed well in the ISS experiments: Rather than killing the microbes, it prevented them from adhering to the surface in the first place.

The specific surface used was made of silicon that was etched to produce a nanoscale forest of pillars. This spiky surface is then infused with a silicon oil, which is drawn into the texture and held in place by capillary action, leaving a smooth and highly slippery surface that significantly reduces the adhesion of microbes and prevents them from forming a biofilm.

Identical experiments were conducted on Earth as well as on the space station to determine the differences produced by the microgravity environment in orbit. To the researchers' surprise, the liquid-infused surface performed even better in space than it did on Earth at preventing microbial adhesion.

On previous and current space stations, including the USSR’s Mir station, Salyut 6, and Salyut 7,  as well as the International Space Station, “they’ve seen these biofilms, and they jeopardize a variety of instruments or equipment, including space suits, recycling units, radiators, and water treatment facilities, so it’s a very important problem that needed to be understood,” says Varanasi, a professor of mechanical engineering and founder of a company called LiquiGlide, which makes liquid-impregnated surfaces for containers to help their contents slide out.

Previous tests on Earth had shown that these treated surfaces could significantly reduce biofilm adhesion. When the samples from the space station were retrieved and tested, “we found that these surfaces are extremely good at preventing biofilm formation in the space station as well,” Varanasi says. This is important because past work has found that microgravity can have a significant influence on biofilm morphologies, attachment behavior, and gene expression, according to McBride. Thus, strategies that work well on Earth for biofilm mitigation may not necessarily be applicable to microgravity situations.

Preventing biofilms will be especially important for future long-duration missions, such as to the moon or Mars, where the option of quickly returning fouled equipment or sick astronauts to Earth will not be available, the team says. If further testing confirms its long-term stability and successful biofilm prevention, coatings based on the liquid-treated surface concept could be applied to a variety of critical components that are known to be susceptible to biofilm fouling, such as water treatment hoses and filters, or to parts that come in close contact with astronauts, such as gloves or food preparation surfaces.

In the terrestrial samples, biofilm formation was reduced by about 74 percent, while the space station samples showed a reduction of about 86 percent, says Flores, who did much of the testing of the ISS-exposed samples. “The results we got were surprising,” she says, because earlier tests carried out by others had shown biofilm formation was actually greater in space than on Earth. “We actually found the opposite on these samples,” she says.

While the tests used a specific and well-studied gram-negative kind of bacteria, she says, the results should apply to any kind of gram-negative bacteria, and likely to gram-positive bacteria as well. They found that the areas of the surface where no bacterial growth took place were covered by a thin layer of nucleic acids, which have a slight negative electric charge that may have helped to prevent microbes from adhering. Both gram-positive and gram-negative bacteria have a slight negative charge, which could repel them from that negatively charged surface, Flores says.

Other types of anti-fouling surfaces, Varanasi says, “work mostly on a biocidal property, which usually only works for a first layer of cells because after those cells die they can form a deposit, and microbes can grow on top of them. So, usually it’s been a very hard problem.” But with the liquid-impregnated surface, where what is exposed is mostly just the liquid itself, there are very few defects or points where the bacteria can find a footing, he says.

Although the test material was on the space station for more than a year, the actual tests were only performed over a three-day period because they required active participation by the astronauts whose schedules are always very busy. But one recommendation the team has made, based on these initial results, is that longer-duration tests should be carried out on a future mission. In these first tests, Flores says, the results after the third day looked the same as after the first and second days. “We don’t know for how long it will be able to keep up this performance, so we definitely recommend a longer time of incubation, and also, if possible, a continuous analysis, and not just end points.”

Zea, who initiated the project with NASA, says that this was the first time the agency has conducted tests that involved joint participation by two of its science programs, biology and physical sciences. “I think it stresses the importance of multidisciplinarity because we need to be able to combine these different disciplines to find solutions to real world problems.”

Biofilms are also a significant medical issue on Earth, especially on medical devices or implants including catheters, where they can lead to significant disease problems. The same kind of liquid-impregnated surfaces may have a role to play in helping to address these issues, Varanasi says.

The project was supported by NASA and used facilities provided by several other companies and organizations.

© Image: Space Biofilm Program

Inside these vials are chambers containing the new surface material and the microbes. They were launched in stasis to ISS to avoid bacterial growth before reaching microgravity conditions. Once in ISS, the astronauts activated the samples by combining the various chambers in the vials.

Chip Industry Week In Review

By Adam Kovac, Karen Heyman, and Liz Allan.

India approved the construction of two fabs and a packaging house, for a total investment of about $15.2 billion, according to multiple sources. One fab will be jointly owned by Tata and Taiwan’s Powerchip. The second fab will be a joint investment between CG Power, Japan’s Renesas Electronics, and Thailand’s Stars Microelectronics. Tata will run the packaging facility, as well. India expects these efforts will add 20,000 advanced technology jobs and 60,000 indirect jobs, according to the Times of India. The country has been talking about building a fab for at least the past couple of decades, but funding never materialized.

The U.S. Department of Commerce (DoC) issued a CHIPS Act-based Notice of Funding Opportunity for R&D to establish and accelerate domestic capacity for advanced packaging substrates and substrate materials. The U.S. Secretary of Commerce said the government is prioritizing CHIPS Act funding for projects that will be operational by 2030 and anticipates America will produce 20% of the world’s leading-edge logic chips by the end of the decade.

The top three foundries plan to implement backside power delivery as soon as the 2nm node, setting the stage for faster and more efficient switching in chips, reduced routing congestion, and lower noise across multiple metal layers. But this novel approach to optimizing logic performance depends on advances in lithography, etching, polishing, and bonding processes.

Intel spun out Altera as a standalone FPGA company, the culmination of a rebranding and reorganization of its former Programmable Solutions Group. The move follows Intel’s decision to keep Intel Foundry at arm’s length, with a clean line between the foundry and the company’s processor business.

Multiple new hardware micro-architecture vulnerabilities were published in the latest Common Weakness Enumeration release this week, all related to transient execution (CWE 1420-1423).

The U.S. Office of the National Cyber Director (ONCD) published a technical report calling for the adoption of memory safe programming languages, aiming to reduce the attack surface in cyberspace and anticipate systemic security risk with better diagnostics. The DoC also is seeking information ahead of an inquiry into Chinese-made connected vehicles “to understand the extent of the technology in these cars that can capture wide swaths of data or remotely disable or manipulate connected vehicles.”

Quick links to more news:

Design and Power
Manufacturing and Test
Automotive
Security
Pervasive Computing and AI
Events

Design and Power

Micron began mass production of a new high-bandwidth chip for AI. The company said the HBM3E will be a key component in NVIDIA’s H2000 Tensor Core GPUs, set to begin shipping in the second quarter of 2024. HBM is a key component of 2.5D advanced packages.

Samsung developed a 36GB HBM3E 12H DRAM, saying it sets new records for bandwidth. The company achieved this by using advanced thermal compression non-conductive film, which allowed it to cram 12 layers into the area normally taken up by 8. This is a novel way of increasing DRAM density.

Keysight introduced QuantumPro, a design and simulation tool, plus workflow, for quantum computers. It combines five functionalities into the Advanced Design System (ADS) 2024 platform. Keysight also introduced its AI Data Center Test Platform, which includes pre-packaged benchmarking apps and dataset analysis tools.

Synopsys announced a 1.6T Ethernet IP solution, including 1.6T MAC and PCS Ethernet controllers, 224G Ethernet PHY IP, and verification IP.

Tenstorrent, Japan’s Leading-Edge Semiconductor Technology Center (LSTC) , and Rapidus are co-designing AI chips. LSTC will use Tenstorrent’s RISC-V and Chiplet IP for its forthcoming edge 2nm AI accelerator.

This week’s Systems and Design newsletter features these top stories:

  • 2.5D Integration: Big Chip Or Small PCB: Defining whether a 5D device is a PCB shrunk to fit into a package or a chip that extends beyond the limits of a single die can have significant design consequences.
  • Commercial Chiplets: Challenges of establishing a commercial chiplet.
  • Accellera Preps New Standard For Clock-Domain Crossing: New standard aims to streamline the clock-domain crossing flow.
  • Thinking Big: From Chips To Systems: Aart de Geus discusses the shift from chips to systems, next-generation transistors, and what’s required to build multi-die devices.
  • Integration challenges for RISC-V: Modifying the source code allows for democratization of design, but it adds some hurdles for design teams (video).

Demand for high-end AI servers is driven by four American companies, which will account for 60% of global demand in 2024, according to Trendforce. NVIDIA is projected to continue leading the market, with AMD closing the gap due its lower cost model.

The EU consortium PREVAIL is accepting design proposals as it seeks to develop next-gen edge-AI technologies. Anchors include CEA-Leti, Fraunhofer-Gesellschaft, imec, and VTT, which will use their 300mm fabrication, design, and test facilities to validate prototypes.

Siemens joined an initiative to expand educational opportunities in the semiconductor space around the world. The Semiconductor Education Alliance was launched by Arm in 2023 and focuses on helping teach skills in IC design and EDA.

Q-CTRL announced partnerships with six firms that it says will expand access to its performance-management software and quantum technologies. Wolfram, Aqarios, and qBraid will integrate Q-CTRL’s Fire Opal technology into their products, while Qblox, Keysight, and Quantware will utilize Q-CTRL’s Boulder Opal hardware system.

NTT, Red Hat, NVIDIA, and Fujitsu teamed up to provide data pipeline acceleration and contain orchestration technologies targeted at real-time AI analysis of massive data sets at the edge.

Manufacturing and Test

The U.S. Department of Energy (DOE)’s Office of Electricity launched the American-Made Silicon Carbide (SiC)  Packaging Prize. This $2.25 million contest invites competitors to propose, design, build, and test state-of-the-art SiC semiconductor packaging prototypes.

Applied Materials introduced products and solutions for patterning issues in the “angstrom era,” including line edge roughness, tip-to-tip spacing limitations, bridge defects, and edge placement errors.

imec reported progress made in EUV processes, masks and metrology in preparation for high-NA EUV. It also identified advanced node lithography and etch related processes that contribute the most to direct emissions of CO2, along with proposed solutions.

proteanTecs will participate in the Arm Total Design ecosystem, which now includes more than 20 companies united around a charter to accelerate and simplify the development of custom SoCs based on Arm Neoverse compute subsystems.

NikkeiAsia took an in-depth look at Japan’s semiconductor ecosystem and concluded it is ripe for revival with investments from TSMC, Samsung, and Micron, among others. TrendForce came to a similar conclusion, pointing to the fast pace of Japan’s resurgence, including the opening of TSMC’s fab.

FormFactor closed its sale of its Suzhou and Shanghai companies to Grand Junction Semiconductor for $25M in cash.

The eBeam Initiative celebrated its 15th anniversary and welcomed a new member, FUJIFILM. The group also uncorked its fourth survey of its members technology using deep learning in the photomask-to-wafer manufacturing flow.

Automotive

Apple shuttered its electric car project after 10 years of development. The chaotic effort cost the company billions of dollars, according to The New York Times.

Infineon released new automotive programmable SoCs with fifth-gen human machine interface (HMI) technology, offering improved sensitivity in three packages. The MCU offers up to 84 GPIOs and 384 KB of flash memory. The company also released automotive and industrial-grade 750V G1 discrete SiC MOSFETs aimed at applications such as EV charging, onboard chargers, DC-DC converters, energy, solid state circuit breakers, and data centers.

Cadence expanded its Tensilica IP portfolio to boost computation for automotive sensor fusion applications. Vision, radar, lidar, and AI processing are combined in a single DSP for multi-modal, sensor-based system designs.

Ansys will continue translating fast computing into fast cars, as the company’s partnership with Oracle Red Bull Racing was renewed. The Formula 1 team uses Ansys technology to improve car aerodynamics and ensure the safety of its vehicles.

Lazer Sport adopted Siemens’ Xcelerator portfolio to connect 3D design with 3D printing for prototyping and digital simulation of its sustainable KinetiCore cycling helmet.

The chair of the U.S. Federal Communications Commission (FCC) suggested automakers that sell internet-connected cars should be subject to a telecommunications law aiming to protect domestic violence survivors, reports CNBC. This is due to emerging cases of stalking through vehicle location tracking technology and remote control of functions like locking doors or honking the horn.

BYD‘s CEO said the company does not plan to enter the U.S. market because it is complicated and electrification has slowed down, reports Yahoo Finance. Meanwhile, the first shipment of BYD vehicles arrived in Europe, according to DW News.

Ascent Solar Technologiessolar module products will fly on NASA’s upcoming Lightweight Integrated Solar Array and AnTenna (LISA-T) mission.

Security

Researchers at Texas A&M University and the University of Delaware proposed the first red-team attack on graph neural network (GNN)-based techniques in hardware security.

A panel of four experts discuss mounting concerns over quantum security, auto architectures, and supply chain resiliency.

Synopsys released its ninth annual Open Source Security and Risk Analysis report, finding that 74% of code bases contained high-risk open-source vulnerabilities, up 54% since last year.

President Biden issued an executive order to prevent the large-scale transfer of Americans’ personal data to countries of concern. Types of data include genomic, biometric, personal health, geolocation, financial, and other personally identifiable information, which bad actors can use to track and scam Americans.

The National Institute of Standards and Technology (NIST) released Cybersecurity Framework (CSF) 2.0 to provide a comprehensive view for managing cybersecurity risk.

The EU Agency for Cybersecurity (ENISA) published a study on best practices for cyber crisis management, saying the geopolitical situation continues to impact the cyber threat landscape and planning for threats and incidents is vital for crisis management.

The U.S. Department of Energy (DOE) announced $45 million to protect the energy sector from cyberattacks.

The National Security Agency (NSA), the Federal Bureau of Investigation (FBI), and others published an advisory on Russian cyber actors using compromised routers.  Also the Cybersecurity and Infrastructure Security Agency (CISA), the UK National Cyber Security Centre (NCSC), and partners advised of tactics used by Russian Foreign Intelligence Service cyber actors to gain initial access into a cloud environment.

CISA, the FBI, and the Department of Health and Human Services (HHS) updated an advisory concerning the ALPHV Blackcat ransomware as a service (RaaS), which primarily targets the healthcare sector.

CISA also published a guide to support university cybersecurity clinics and issued other alerts.

Pervasive Computing and AI

Renesas expanded its RZ family of MPUs with a single-chip AI accelerator that offers 10 TOPS per watt power efficiency and delivers AI inference performance of up to 80 TOPS without a cooling fan. The chip is aimed at next-gen robotics with vision AI and real-time control.

Infineon launched dual-phase power modules to help data centers meet the power demands of AI GPU platforms. The company also released a family of solid-state isolators to deliver faster switching with up to 70% lower power dissipation.

Fig. 1: Infineon’s dual phase power modules: Source: Infineon

Amber Semiconductor announced a reference design for brushless motor applications using its AC to DC conversion semiconductor system to power ST‘s STM32 MCUs.

Micron released its universal flash storage (UFS) 4.0 package at just 9×13 mm, built on 232-layer 3D NAND and offering up to 1 terabyte capacity to enable next-gen phone designs and larger batteries.

LG and Meta teamed up to develop extended reality (XR) products, content, services, and platforms within the virtual space.

Microsoft and Mistral AI partnered to accelerate AI innovation and to develop and deploy Mistral’s next-gen large language models (LLMs).

Microsoft’s vice chair and president announced the company’s AI access principles, governing how it will operate AI datacenter infrastructure and other AI assets around the world.

Singtel and VMware partnered to enable enterprises to manage their connectivity and cloud infrastructure through the Singtel Paragon platform for 5G and edge cloud.

Keysight was selected as the Test Partner for the Deutsche Telekom Satellite NB-IoT Early Adopter Program, providing an end-to-end NB-IoT NTN testbed that allows designers and developers to validate reference designs for solutions using 3GPP Release 17 (Rel-17) NTN standards.

Global server shipments are predicted to increase by 2.05% in 2024, with AI servers accounting for about 12%, reports TrendForce. Also, the smartphone camera lens market is expected to rebound in 2024 with 3.8% growth driven by AI-smartphones, to reach about 4.22 billion units, reports TrendForce.

Yole released a smartphone camera comparison report with a focus on iPhone evolution and analysis of the structure, design, and teardown of each camera module, along with the CIS dimensions, technology node, and manufacturing processes.

Counterpoint released a number of 2023 reports on smartphone shipments by country and operator migrations to 5G.

Events

Find upcoming chip industry events here, including:

Event Date Location
International Symposium on FPGAs Mar 3 – 5 Monterey, CA
DVCON: Design & Verification Mar 4 – 7 San Jose, CA
ISES Japan 2024: International Semiconductor Executive Summit Mar 5 – 6 Tokyo, Japan
ISS Industry Strategy Symposium Europe Mar 6 – 8 Vienna, Austria
GSA International Semiconductor Conference Mar 13 – 14 London
Device Packaging Conference (DPC 2024) Mar 18 – 21 Fountain Hills, AZ
GOMACTech Mar 18 – 21 Charleston, South Carolina
SNUG Silicon Valley Mar 20 – 21 Santa Clara, CA
All Upcoming Events

Upcoming webinars are here, including topics such as digital twins, power challenges in data centers, and designing for 112G interface compliance.

Further Reading and Newsletters

Read the latest special reports and top stories, or check out the latest newsletters:

Systems and Design
Low Power-High Performance
Test, Measurement and Analytics
Manufacturing, Packaging and Materials
Automotive, Security and Pervasive Computing

The post Chip Industry Week In Review appeared first on Semiconductor Engineering.

How to prevent biofilms in space

After exposure in space aboard the International Space Station, a new kind of surface treatment significantly reduced the growth of biofilms, scientists report. Biofilms are mats of microbial or fungal growth that can clog hoses or filters in water processing systems, or potentially cause illness in people.

In the experiment, researchers investigated a variety of surfaces treated in different ways and exposed to a bacteria called Pseudomonas aeruginosa, which is an opportunistic pathogen than can cause infections in humans, especially in hospitals. The surfaces were incubated for three days aboard the space station, starting in 2019. The results show that textured surfaces impregnated with a lubricant were highly successful at preventing biofilm growth during their long exposure in space. The findings are described in a paper in the journal Nature Microgravity, by Samantha McBride PhD ’20 and Kripa Varanasi of MIT, Pamela Flores and Luis Zea at the University of Colorado, and Jonathan Galakza at NASA Ames Research Center.

Clogs in water recovery system hoses aboard the ISS have been so severe at times, the hoses had to be sent back to Earth for cleaning and refurbishing. And while it isn’t known whether biofilms have directly contributed to astronaut illnesses, on Earth, biofilms are associated with 65 percent of microbial infections, and 80 percent of chronic infections, the researchers say.

One approach to preventing biofilms is to use surfaces coated with certain metals or oxides that kill microbes, but this approach can fail when a layer of dead microbes builds up on the surface and allows biofilm to form above it. But this was not the case with the liquid-infused surface that performed well in the ISS experiments: Rather than killing the microbes, it prevented them from adhering to the surface in the first place.

The specific surface used was made of silicon that was etched to produce a nanoscale forest of pillars. This spiky surface is then infused with a silicon oil, which is drawn into the texture and held in place by capillary action, leaving a smooth and highly slippery surface that significantly reduces the adhesion of microbes and prevents them from forming a biofilm.

Identical experiments were conducted on Earth as well as on the space station to determine the differences produced by the microgravity environment in orbit. To the researchers' surprise, the liquid-infused surface performed even better in space than it did on Earth at preventing microbial adhesion.

On previous and current space stations, including the USSR’s Mir station, Salyut 6, and Salyut 7,  as well as the International Space Station, “they’ve seen these biofilms, and they jeopardize a variety of instruments or equipment, including space suits, recycling units, radiators, and water treatment facilities, so it’s a very important problem that needed to be understood,” says Varanasi, a professor of mechanical engineering and founder of a company called LiquiGlide, which makes liquid-impregnated surfaces for containers to help their contents slide out.

Previous tests on Earth had shown that these treated surfaces could significantly reduce biofilm adhesion. When the samples from the space station were retrieved and tested, “we found that these surfaces are extremely good at preventing biofilm formation in the space station as well,” Varanasi says. This is important because past work has found that microgravity can have a significant influence on biofilm morphologies, attachment behavior, and gene expression, according to McBride. Thus, strategies that work well on Earth for biofilm mitigation may not necessarily be applicable to microgravity situations.

Preventing biofilms will be especially important for future long-duration missions, such as to the moon or Mars, where the option of quickly returning fouled equipment or sick astronauts to Earth will not be available, the team says. If further testing confirms its long-term stability and successful biofilm prevention, coatings based on the liquid-treated surface concept could be applied to a variety of critical components that are known to be susceptible to biofilm fouling, such as water treatment hoses and filters, or to parts that come in close contact with astronauts, such as gloves or food preparation surfaces.

In the terrestrial samples, biofilm formation was reduced by about 74 percent, while the space station samples showed a reduction of about 86 percent, says Flores, who did much of the testing of the ISS-exposed samples. “The results we got were surprising,” she says, because earlier tests carried out by others had shown biofilm formation was actually greater in space than on Earth. “We actually found the opposite on these samples,” she says.

While the tests used a specific and well-studied gram-negative kind of bacteria, she says, the results should apply to any kind of gram-negative bacteria, and likely to gram-positive bacteria as well. They found that the areas of the surface where no bacterial growth took place were covered by a thin layer of nucleic acids, which have a slight negative electric charge that may have helped to prevent microbes from adhering. Both gram-positive and gram-negative bacteria have a slight negative charge, which could repel them from that negatively charged surface, Flores says.

Other types of anti-fouling surfaces, Varanasi says, “work mostly on a biocidal property, which usually only works for a first layer of cells because after those cells die they can form a deposit, and microbes can grow on top of them. So, usually it’s been a very hard problem.” But with the liquid-impregnated surface, where what is exposed is mostly just the liquid itself, there are very few defects or points where the bacteria can find a footing, he says.

Although the test material was on the space station for more than a year, the actual tests were only performed over a three-day period because they required active participation by the astronauts whose schedules are always very busy. But one recommendation the team has made, based on these initial results, is that longer-duration tests should be carried out on a future mission. In these first tests, Flores says, the results after the third day looked the same as after the first and second days. “We don’t know for how long it will be able to keep up this performance, so we definitely recommend a longer time of incubation, and also, if possible, a continuous analysis, and not just end points.”

Zea, who initiated the project with NASA, says that this was the first time the agency has conducted tests that involved joint participation by two of its science programs, biology and physical sciences. “I think it stresses the importance of multidisciplinarity because we need to be able to combine these different disciplines to find solutions to real world problems.”

Biofilms are also a significant medical issue on Earth, especially on medical devices or implants including catheters, where they can lead to significant disease problems. The same kind of liquid-impregnated surfaces may have a role to play in helping to address these issues, Varanasi says.

The project was supported by NASA and used facilities provided by several other companies and organizations.

© Image: Space Biofilm Program

Inside these vials are chambers containing the new surface material and the microbes. They were launched in stasis to ISS to avoid bacterial growth before reaching microgravity conditions. Once in ISS, the astronauts activated the samples by combining the various chambers in the vials.

How to prevent biofilms in space

After exposure in space aboard the International Space Station, a new kind of surface treatment significantly reduced the growth of biofilms, scientists report. Biofilms are mats of microbial or fungal growth that can clog hoses or filters in water processing systems, or potentially cause illness in people.

In the experiment, researchers investigated a variety of surfaces treated in different ways and exposed to a bacteria called Pseudomonas aeruginosa, which is an opportunistic pathogen than can cause infections in humans, especially in hospitals. The surfaces were incubated for three days aboard the space station, starting in 2019. The results show that textured surfaces impregnated with a lubricant were highly successful at preventing biofilm growth during their long exposure in space. The findings are described in a paper in the journal Nature Microgravity, by Samantha McBride PhD ’20 and Kripa Varanasi of MIT, Pamela Flores and Luis Zea at the University of Colorado, and Jonathan Galakza at NASA Ames Research Center.

Clogs in water recovery system hoses aboard the ISS have been so severe at times, the hoses had to be sent back to Earth for cleaning and refurbishing. And while it isn’t known whether biofilms have directly contributed to astronaut illnesses, on Earth, biofilms are associated with 65 percent of microbial infections, and 80 percent of chronic infections, the researchers say.

One approach to preventing biofilms is to use surfaces coated with certain metals or oxides that kill microbes, but this approach can fail when a layer of dead microbes builds up on the surface and allows biofilm to form above it. But this was not the case with the liquid-infused surface that performed well in the ISS experiments: Rather than killing the microbes, it prevented them from adhering to the surface in the first place.

The specific surface used was made of silicon that was etched to produce a nanoscale forest of pillars. This spiky surface is then infused with a silicon oil, which is drawn into the texture and held in place by capillary action, leaving a smooth and highly slippery surface that significantly reduces the adhesion of microbes and prevents them from forming a biofilm.

Identical experiments were conducted on Earth as well as on the space station to determine the differences produced by the microgravity environment in orbit. To the researchers' surprise, the liquid-infused surface performed even better in space than it did on Earth at preventing microbial adhesion.

On previous and current space stations, including the USSR’s Mir station, Salyut 6, and Salyut 7,  as well as the International Space Station, “they’ve seen these biofilms, and they jeopardize a variety of instruments or equipment, including space suits, recycling units, radiators, and water treatment facilities, so it’s a very important problem that needed to be understood,” says Varanasi, a professor of mechanical engineering and founder of a company called LiquiGlide, which makes liquid-impregnated surfaces for containers to help their contents slide out.

Previous tests on Earth had shown that these treated surfaces could significantly reduce biofilm adhesion. When the samples from the space station were retrieved and tested, “we found that these surfaces are extremely good at preventing biofilm formation in the space station as well,” Varanasi says. This is important because past work has found that microgravity can have a significant influence on biofilm morphologies, attachment behavior, and gene expression, according to McBride. Thus, strategies that work well on Earth for biofilm mitigation may not necessarily be applicable to microgravity situations.

Preventing biofilms will be especially important for future long-duration missions, such as to the moon or Mars, where the option of quickly returning fouled equipment or sick astronauts to Earth will not be available, the team says. If further testing confirms its long-term stability and successful biofilm prevention, coatings based on the liquid-treated surface concept could be applied to a variety of critical components that are known to be susceptible to biofilm fouling, such as water treatment hoses and filters, or to parts that come in close contact with astronauts, such as gloves or food preparation surfaces.

In the terrestrial samples, biofilm formation was reduced by about 74 percent, while the space station samples showed a reduction of about 86 percent, says Flores, who did much of the testing of the ISS-exposed samples. “The results we got were surprising,” she says, because earlier tests carried out by others had shown biofilm formation was actually greater in space than on Earth. “We actually found the opposite on these samples,” she says.

While the tests used a specific and well-studied gram-negative kind of bacteria, she says, the results should apply to any kind of gram-negative bacteria, and likely to gram-positive bacteria as well. They found that the areas of the surface where no bacterial growth took place were covered by a thin layer of nucleic acids, which have a slight negative electric charge that may have helped to prevent microbes from adhering. Both gram-positive and gram-negative bacteria have a slight negative charge, which could repel them from that negatively charged surface, Flores says.

Other types of anti-fouling surfaces, Varanasi says, “work mostly on a biocidal property, which usually only works for a first layer of cells because after those cells die they can form a deposit, and microbes can grow on top of them. So, usually it’s been a very hard problem.” But with the liquid-impregnated surface, where what is exposed is mostly just the liquid itself, there are very few defects or points where the bacteria can find a footing, he says.

Although the test material was on the space station for more than a year, the actual tests were only performed over a three-day period because they required active participation by the astronauts whose schedules are always very busy. But one recommendation the team has made, based on these initial results, is that longer-duration tests should be carried out on a future mission. In these first tests, Flores says, the results after the third day looked the same as after the first and second days. “We don’t know for how long it will be able to keep up this performance, so we definitely recommend a longer time of incubation, and also, if possible, a continuous analysis, and not just end points.”

Zea, who initiated the project with NASA, says that this was the first time the agency has conducted tests that involved joint participation by two of its science programs, biology and physical sciences. “I think it stresses the importance of multidisciplinarity because we need to be able to combine these different disciplines to find solutions to real world problems.”

Biofilms are also a significant medical issue on Earth, especially on medical devices or implants including catheters, where they can lead to significant disease problems. The same kind of liquid-impregnated surfaces may have a role to play in helping to address these issues, Varanasi says.

The project was supported by NASA and used facilities provided by several other companies and organizations.

© Image: Space Biofilm Program

Inside these vials are chambers containing the new surface material and the microbes. They were launched in stasis to ISS to avoid bacterial growth before reaching microgravity conditions. Once in ISS, the astronauts activated the samples by combining the various chambers in the vials.

Video Friday: Agile but Safe



Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

Cybathlon Challenges: 2 February 2024, ZURICH
Eurobot Open 2024: 8–11 May 2024, LA ROCHE-SUR-YON, FRANCE
ICRA 2024: 13–17 May 2024, YOKOHAMA, JAPAN

Enjoy today’s videos!

Is “scamperiest” a word? If not, it should be, because this is the scamperiest robot I’ve ever seen.

[ ABS ]

GITAI is pleased to announce that its 1.5-meter-long autonomous dual robotic arm system (S2) has successfully arrived at the International Space Station (ISS) aboard the SpaceX Falcon 9 rocket (NG-20) to conduct an external demonstration of in-space servicing, assembly, and manufacturing (ISAM) while onboard the ISS. The success of the S2 tech demo will be a major milestone for GITAI, confirming the feasibility of this technology as a fully operational system in space.

[ GITAI ]

This work presents a comprehensive study on using deep reinforcement learning (RL) to create dynamic locomotion controllers for bipedal robots. Going beyond focusing on a single locomotion skill, we develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.

And if you want to get exhausted on behalf of a robot, the full 400-meter dash is below.

[ Hybrid Robotics ]

NASA’s Ingenuity Mars Helicopter pushed aerodynamic limits during the final months of its mission, setting new records for speed, distance, and altitude. Hear from Ingenuity chief engineer Travis Brown on how the data the team collected could eventually be used in future rotorcraft designs.

[ NASA ]

BigDog: 15 years of solving mobility problems its own way.

[ Boston Dynamics ]

[Harvard School of Engineering and Applied Sciences] researchers are helping develop resilient and autonomous deep space and extraterrestrial habitations by developing technologies to let autonomous robots repair or replace damaged components in a habitat. The research is part of the Resilient ExtraTerrestrial Habitats institute (RETHi) led by Purdue University, in partnership with [Harvard] SEAS, the University of Connecticut and the University of Texas at San Antonio. Its goal is to “design and operate resilient deep space habitats that can adapt, absorb and rapidly recover from expected and unexpected disruptions.”

[ Harvard SEAS ]

Researchers from Huazhong University of Science and Technology (HUST) in a recent T-RO paper describe and construct a novel variable stiffness spherical joint motor that enables dexterous motion and joint compliance in omni-directions.

[ Paper ]

Thanks, Ram!

We are told that this new robot from HEBI is called “Mark Suckerberg” and that they’ve got a pretty cool application in mind for it, to be revealed later this year.

[ HEBI Robotics ]

Thanks, Dave!

Dive into the first edition of our new Real-World-Robotics class at ETH Zürich! Our students embarked on an incredible journey, creating their human-like robotic hands from scratch. In just three months, the teams designed, built, and programmed their tendon-driven robotic hands, mastering dexterous manipulation with reinforcement learning! The result? A spectacular display of innovation and skill during our grand final.

[ SRL ETHZ ]

Carnegie Mellon researchers have built a system with a robotic arm atop a RangerMini 2.0 robotic cart from AgileX robotics to make what they’re calling a platform for “intelligent movement and processing.”

[ CMU ] via [ AgileX ]

Picassnake is our custom-made robot that paints pictures from music. Picassnake consists of an arm and a head, embedded in a plush snake doll. The robot is connected to a laptop for control and music processing, which can be fed through a microphone or an MP3 file. To open the media source, an operator can use the graphical user interface or place a text QR code in front of a webcam. Once the media source is opened, Picassnake generates unique strokes based on the music and translates the strokes to physical movement to paint them on canvas.

[ Picassnake ]

In April 2021, NASA’s Ingenuity Mars Helicopter became the first spacecraft to achieve powered, controlled flight on another world. With 72 successful flights, Ingenuity has far surpassed its originally planned technology demonstration of up to five flights. On Jan. 18, Ingenuity flew for the final time on the Red Planet. Join Tiffany Morgan, NASA’s Mars Exploration Program Deputy Director, and Teddy Tzanetos, Ingenuity Project Manager, as they discuss these historic flights and what they could mean for future extraterrestrial aerial exploration.

[ NASA ]

How to prevent biofilms in space

After exposure in space aboard the International Space Station, a new kind of surface treatment significantly reduced the growth of biofilms, scientists report. Biofilms are mats of microbial or fungal growth that can clog hoses or filters in water processing systems, or potentially cause illness in people.

In the experiment, researchers investigated a variety of surfaces treated in different ways and exposed to a bacteria called Pseudomonas aeruginosa, which is an opportunistic pathogen than can cause infections in humans, especially in hospitals. The surfaces were incubated for three days aboard the space station, starting in 2019. The results show that textured surfaces impregnated with a lubricant were highly successful at preventing biofilm growth during their long exposure in space. The findings are described in a paper in the journal Nature Microgravity, by Samantha McBride PhD ’20 and Kripa Varanasi of MIT, Pamela Flores and Luis Zea at the University of Colorado, and Jonathan Galakza at NASA Ames Research Center.

Clogs in water recovery system hoses aboard the ISS have been so severe at times, the hoses had to be sent back to Earth for cleaning and refurbishing. And while it isn’t known whether biofilms have directly contributed to astronaut illnesses, on Earth, biofilms are associated with 65 percent of microbial infections, and 80 percent of chronic infections, the researchers say.

One approach to preventing biofilms is to use surfaces coated with certain metals or oxides that kill microbes, but this approach can fail when a layer of dead microbes builds up on the surface and allows biofilm to form above it. But this was not the case with the liquid-infused surface that performed well in the ISS experiments: Rather than killing the microbes, it prevented them from adhering to the surface in the first place.

The specific surface used was made of silicon that was etched to produce a nanoscale forest of pillars. This spiky surface is then infused with a silicon oil, which is drawn into the texture and held in place by capillary action, leaving a smooth and highly slippery surface that significantly reduces the adhesion of microbes and prevents them from forming a biofilm.

Identical experiments were conducted on Earth as well as on the space station to determine the differences produced by the microgravity environment in orbit. To the researchers' surprise, the liquid-infused surface performed even better in space than it did on Earth at preventing microbial adhesion.

On previous and current space stations, including the USSR’s Mir station, Salyut 6, and Salyut 7,  as well as the International Space Station, “they’ve seen these biofilms, and they jeopardize a variety of instruments or equipment, including space suits, recycling units, radiators, and water treatment facilities, so it’s a very important problem that needed to be understood,” says Varanasi, a professor of mechanical engineering and founder of a company called LiquiGlide, which makes liquid-impregnated surfaces for containers to help their contents slide out.

Previous tests on Earth had shown that these treated surfaces could significantly reduce biofilm adhesion. When the samples from the space station were retrieved and tested, “we found that these surfaces are extremely good at preventing biofilm formation in the space station as well,” Varanasi says. This is important because past work has found that microgravity can have a significant influence on biofilm morphologies, attachment behavior, and gene expression, according to McBride. Thus, strategies that work well on Earth for biofilm mitigation may not necessarily be applicable to microgravity situations.

Preventing biofilms will be especially important for future long-duration missions, such as to the moon or Mars, where the option of quickly returning fouled equipment or sick astronauts to Earth will not be available, the team says. If further testing confirms its long-term stability and successful biofilm prevention, coatings based on the liquid-treated surface concept could be applied to a variety of critical components that are known to be susceptible to biofilm fouling, such as water treatment hoses and filters, or to parts that come in close contact with astronauts, such as gloves or food preparation surfaces.

In the terrestrial samples, biofilm formation was reduced by about 74 percent, while the space station samples showed a reduction of about 86 percent, says Flores, who did much of the testing of the ISS-exposed samples. “The results we got were surprising,” she says, because earlier tests carried out by others had shown biofilm formation was actually greater in space than on Earth. “We actually found the opposite on these samples,” she says.

While the tests used a specific and well-studied gram-negative kind of bacteria, she says, the results should apply to any kind of gram-negative bacteria, and likely to gram-positive bacteria as well. They found that the areas of the surface where no bacterial growth took place were covered by a thin layer of nucleic acids, which have a slight negative electric charge that may have helped to prevent microbes from adhering. Both gram-positive and gram-negative bacteria have a slight negative charge, which could repel them from that negatively charged surface, Flores says.

Other types of anti-fouling surfaces, Varanasi says, “work mostly on a biocidal property, which usually only works for a first layer of cells because after those cells die they can form a deposit, and microbes can grow on top of them. So, usually it’s been a very hard problem.” But with the liquid-impregnated surface, where what is exposed is mostly just the liquid itself, there are very few defects or points where the bacteria can find a footing, he says.

Although the test material was on the space station for more than a year, the actual tests were only performed over a three-day period because they required active participation by the astronauts whose schedules are always very busy. But one recommendation the team has made, based on these initial results, is that longer-duration tests should be carried out on a future mission. In these first tests, Flores says, the results after the third day looked the same as after the first and second days. “We don’t know for how long it will be able to keep up this performance, so we definitely recommend a longer time of incubation, and also, if possible, a continuous analysis, and not just end points.”

Zea, who initiated the project with NASA, says that this was the first time the agency has conducted tests that involved joint participation by two of its science programs, biology and physical sciences. “I think it stresses the importance of multidisciplinarity because we need to be able to combine these different disciplines to find solutions to real world problems.”

Biofilms are also a significant medical issue on Earth, especially on medical devices or implants including catheters, where they can lead to significant disease problems. The same kind of liquid-impregnated surfaces may have a role to play in helping to address these issues, Varanasi says.

The project was supported by NASA and used facilities provided by several other companies and organizations.

© Image: Space Biofilm Program

Inside these vials are chambers containing the new surface material and the microbes. They were launched in stasis to ISS to avoid bacterial growth before reaching microgravity conditions. Once in ISS, the astronauts activated the samples by combining the various chambers in the vials.
❌