FreshRSS

Zobrazení pro čtení

Jsou dostupné nové články, klikněte pro obnovení stránky.

Coming Up ACEs: Decoding the AI Technology That’s Enhancing Games With Realistic Digital Humans

Editor’s note: This post is part of the AI Decoded series, which demystifies AI by making the technology more accessible, and which showcases new hardware, software, tools and accelerations for RTX PC users.

Digital characters are leveling up.

Non-playable characters often play a crucial role in video game storytelling, but since they’re usually designed with a fixed purpose, they can get repetitive and boring — especially in vast worlds where there are thousands.

Thanks in part to incredible advances in visual computing like ray tracing and DLSS, video games are more immersive and realistic than ever, making dry encounters with NPCs especially jarring.

Earlier this year, production microservices for the NVIDIA Avatar Cloud Engine launched, giving game developers and digital creators an ace up their sleeve when it comes to making lifelike NPCs. ACE microservices allow developers to integrate state-of-the-art generative AI models into digital avatars in games and applications. With ACE microservices, NPCs can dynamically interact and converse with players in-game and in real time.

Leading game developers, studios and startups are already incorporating ACE into their titles, bringing new levels of personality and engagement to NPCs and digital humans.

Bring Avatars to Life With NVIDIA ACE

The process of creating NPCs starts with providing them a backstory and purpose, which helps guide the narrative and ensures contextually relevant dialogue. Then, ACE subcomponents work together to build avatar interactivity and enhance responsiveness.

NPCs tap up to four AI models to hear, process, generate dialogue and respond.

The player’s voice first goes into NVIDIA Riva, a technology that builds fully customizable, real-time conversational AI pipelines and turns chatbots into engaging and expressive assistants using GPU-accelerated multilingual speech and translation microservices.

With ACE, Riva’s automatic speech recognition (ASR) feature processes what was said and uses AI to deliver a highly accurate transcription in real time. Explore a Riva-powered demo of speech-to-text in a dozen languages.

The transcription then goes into an LLM — such as Google’s Gemma, Meta’s Llama 2 or Mistral — and taps Riva’s neural machine translation to generate a natural language text response. Next, Riva’s Text-to-Speech functionality generates an audio response.

Finally, NVIDIA Audio2Face (A2F) generates facial expressions that can be synced to dialogue in many languages. With the microservice, digital avatars can display dynamic, realistic emotions streamed live or baked in during post-processing.

The AI network automatically animates face, eyes, mouth, tongue and head motions to match the selected emotional range and level of intensity. And A2F can automatically infer emotion directly from an audio clip.

Each step happens in real time to ensure fluid dialogue between the player and the character. And the tools are customizable, giving developers the flexibility to build the types of characters they need for immersive storytelling or worldbuilding.

Born to Roll

At GDC and GTC, developers and platform partners showcased demos leveraging NVIDIA ACE microservices — from interactive NPCs in gaming to powerful digital human nurses.

Ubisoft is exploring new types of interactive gameplay with dynamic NPCs. NEO NPCs, the product of its latest research and development project, are designed to interact in real time with players, their environment and other characters, opening up new possibilities for dynamic and emergent storytelling.

The capabilities of these NEO NPCs were showcased through demos, each focused on different aspects of NPC behaviors, including environmental and contextual awareness; real-time reactions and animations; and conversation memory, collaboration and strategic decision-making. Combined, the demos spotlighted the technology’s potential to push the boundaries of game design and immersion.

Using Inworld AI technology, Ubisoft’s narrative team created two NEO NPCs, Bloom and Iron, each with their own background story, knowledge base and unique conversational style. Inworld technology also provided the NEO NPCs with intrinsic knowledge of their surroundings, as well as interactive responses powered by Inworld’s LLM. NVIDIA A2F provided facial animations and lip syncing for the two NPCs real time.

Inworld and NVIDIA set GDC abuzz with a new technology demo called Covert Protocol, which showcased NVIDIA ACE technologies and the Inworld Engine. In the demo, players controlled a private detective who completed objectives based on the outcome of conversations with NPCs on the scene. Covert Protocol unlocked social simulation game mechanics with AI-powered digital characters that acted as bearers of crucial information, presented challenges and catalyzed key narrative developments. This enhanced level of AI-driven interactivity and player agency is set to open up new possibilities for emergent, player-specific gameplay.

Built on Unreal Engine 5, Covert Protocol uses the Inworld Engine and NVIDIA ACE, including NVIDIA Riva ASR and A2F, to augment Inworld’s speech and animation pipelines.

In the latest version of the NVIDIA Kairos tech demo built in collaboration with Convai, which was shown at CES, Riva ASR and A2F were used to significantly improve NPC interactivity. Convai’s new framework allowed the NPCs to converse among themselves and gave them awareness of objects, enabling them to pick up and deliver items to desired areas. Furthermore, NPCs gained the ability to lead players to objectives and traverse worlds.

Digital Characters in the Real World

The technology used to create NPCs is also being used to animate avatars and digital humans. Going beyond gaming, task-specific generative AI is moving into healthcare, customer service and more.

NVIDIA collaborated with Hippocratic AI at GTC to extend its healthcare agent solution, showcasing the potential of a generative AI healthcare agent avatar. More work underway to develop a super-low-latency inference platform to power real-time use cases.

“Our digital assistants provide helpful, timely and accurate information to patients worldwide,” said Munjal Shah, cofounder and CEO of Hippocratic AI. “NVIDIA ACE technologies bring them to life with cutting-edge visuals and realistic animations that help better connect to patients.”

Internal testing of Hippocratic’s initial AI healthcare agents is focused on chronic care management, wellness coaching, health risk assessments, social determinants of health surveys, pre-operative outreach and post-discharge follow-up.

UneeQ is an autonomous digital human platform focused on AI-powered avatars for customer service and interactive applications. UneeQ integrated the NVIDIA A2F microservice into its platform and combined it with its Synanim ML synthetic animation technology to create highly realistic avatars for enhanced customer experiences and engagement.

“UneeQ combines NVIDIA animation AI with our own Synanim ML synthetic animation technology to deliver real-time digital human interactions that are emotionally responsive and deliver dynamic experiences powered by conversational AI,” said Danny Tomsett, founder and CEO at UneeQ.

AI in Gaming

ACE is one of the many NVIDIA AI technologies that bring games to the next level.

  • NVIDIA DLSS is a breakthrough graphics technology that uses AI to increase frame rates and improve image quality on GeForce RTX GPUs.
  • NVIDIA RTX Remix enables modders to easily capture game assets, automatically enhance materials with generative AI tools and quickly create stunning RTX remasters with full ray tracing and DLSS.
  • NVIDIA Freestyle, accessed through the new NVIDIA app beta, lets users personalize the visual aesthetics of more than 1,200 games through real-time post-processing filters, with features like RTX HDR, RTX Dynamic Vibrance and more.
  • The NVIDIA Broadcast app transforms any room into a home studio, giving livestream AI-enhanced voice and video tools, including noise and echo removal, virtual background and AI green screen, auto-frame, video noise removal and eye contact.

Experience the latest and greatest in AI-powered experiences with NVIDIA RTX PCs and workstations, and make sense of what’s new, and what’s next, with AI Decoded.

Get weekly updates directly in your inbox by subscribing to the AI Decoded newsletter.

AI Decoded: Demystifying AI and the Hardware, Software and Tools That Power It

With the 2018 launch of RTX technologies and the first consumer GPU built for AI — GeForce RTX — NVIDIA accelerated the shift to AI computing. Since then, AI on RTX PCs and workstations has grown into a thriving ecosystem with more than 100 million users and 500 AI applications.

Generative AI is now ushering in a new wave of capabilities from PC to cloud. And NVIDIA’s rich history and expertise in AI is helping ensure all users have the performance to handle a wide range of AI features.

Users at home and in the office are already taking advantage of AI on RTX with productivity- and entertainment-enhancing software. Gamers feel the benefits of AI on GeForce RTX GPUs with higher frame rates at stunning resolutions in their favorite titles. Creators can focus on creativity, instead of watching spinning wheels or repeating mundane tasks. And developers can streamline workflows using generative AI for prototyping and to automate debugging.

The field of AI is moving fast. As research advances, AI will tackle more complex tasks. And the demanding performance needs will be handled by RTX.

What Is AI?

In its most fundamental form, artificial intelligence is a smarter type of computing. It’s the capability of a computer program or a machine to think, learn and take actions without being explicitly coded with commands to do so, or a user having to control each command.

AI can be thought of as the ability for a device to perform tasks autonomously, by ingesting and analyzing enormous amounts of data, then recognizing patterns in that data — often referred to as being “trained.”

AI development is always oriented around developing systems that perform tasks that would otherwise require human intelligence, and often significant levels of input, to complete — only at speeds beyond any individual’s or group’s capabilities. For this reason, AI is broadly seen as both disruptive and highly transformational.

A key benefit of AI systems is the ability to learn from experiences or patterns inside data, adjusting conclusions on their own when fed new inputs or data. This self-learning allows AI systems to accomplish a stunning variety of tasks, including image recognition, speech recognition, language translation, medical diagnostics, car navigation, image and video enhancement, and hundreds of other use cases.

The next step in the evolution of AI is content generation — referred to as generative AI. It enables users to quickly create new content, and iterate on it, based on a variety of inputs, which can include text, images, sounds, animation, 3D models or other types of data. It then generates new content in the same or a new form.

Popular language applications, like the cloud-based ChatGPT, allow users to generate long-form copy based on a short text request. Image generators like Stable Diffusion turn descriptive text inputs into the desired image. New applications are turning text into video and 2D images into 3D renderings.

GeForce RTX AI PCs and NVIDIA RTX Workstations

AI PCs are computers with dedicated hardware designed to help AI run faster. It’s the difference between sitting around waiting for a 3D image to load, and seeing it update instantaneously with an AI denoiser.

On RTX GPUs, these specialized AI accelerators are called Tensor Cores. And they dramatically speed up AI performance across the most demanding applications for work and play.

One way that AI performance is measured is in teraops, or trillion operations per second (TOPS). Similar to an engine’s horsepower rating, TOPS can give users a sense of a PC’s AI performance with a single metric. The current generation of GeForce RTX GPUs offers performance options that range from roughly 200 AI TOPS all the way to over 1,300 TOPS, with many options across laptops and desktops in between. Professionals get even higher AI performance with the NVIDIA RTX 6000 Ada Generation GPU.

To put this in perspective, the current generation of AI PCs without GPUs range from 10 to 45 TOPS.

More and more types of AI applications will require the benefits of having a PC capable of performing certain AI tasks locally — meaning on the device rather than running in the cloud. Benefits of running on an AI PC include that computing is always available, even without an internet connection; systems offer low latency for high responsiveness; and increased privacy so that users don’t have to upload sensitive materials to an online database before it becomes usable by an AI.

AI for Everyone

RTX GPUs bring more than just performance. They introduce capabilities only possible with RTX technology. Many of these AI features are accessible — and impactful — to millions, regardless of the individual’s skill level.

From AI upscaling to improved video conferencing to intelligent, personalizable chatbots, there are tools to benefit all types of users.

RTX Video uses AI to upscale streaming video and display it in HDR. Bringing lower-resolution video in standard dynamic range to vivid, up to 4K high-resolution high dynamic range. RTX users can enjoy the feature with one-time, one-click enablement on nearly any video streamed in a Chrome or Edge browser.

NVIDIA Broadcast, a free app for RTX users with a straightforward user interface, has a host of AI features that improve video conferencing and livestreaming. It removes unwanted background sounds like clicky keyboards, vacuum cleaners and screaming children with Noise and Echo Removal. It can replace or blur backgrounds with better edge detection using Virtual Background. It smooths low-quality camera images with Video Noise Removal. And it can stay centered on the screen with eyes looking at the camera no matter where the user moves, using Auto Frame and Eye Contact.

Chat with RTX is a local, personalized AI chatbot demo that’s easy to use and free to download.

The tech demo, originally released in January, will get an update with Google’s Gemma soon.

Users can easily connect local files on a PC to a supported large language model simply by dropping files into a single folder and pointing the demo to the location. It enables queries for quick, contextually relevant answers.

Since Chat with RTX runs locally on Windows with GeForce RTX PCs and NVIDIA RTX workstations, results are fast — and the user’s data stays on the device. Rather than relying on cloud-based services, Chat with RTX lets users process sensitive data on a local PC without the need to share it with a third party or have an internet connection.

AI for Gamers

Over the past six years, game performance has seen the greatest leaps with AI acceleration. Gamers have been turning NVIDIA DLSS on since 2019, boosting frame rates and improving image quality. It’s a technique that uses AI to generate pixels in video games automatically. With ongoing improvements, it now increases frame rates by up to 4x.

And with the introduction of Ray Reconstruction in the latest version, DLSS 3.5, visual quality is further enhanced in some of the world’s top titles, setting a new standard for visually richer and more immersive gameplay.

There are now over 500 games and applications that have revolutionized the ways people play and create with ray tracing, DLSS and AI-powered technologies.

Beyond frames, AI is set to improve the way gamers interact with characters and remaster classic games.

NVIDIA ACE microservices — including generative AI-powered speech and animation models — are enabling developers to add intelligent, dynamic digital avatars to games. Demonstrated at CES, ACE won multiple awards for its ability to bring game characters to life as a glimpse into the future of PC gaming.

NVIDIA RTX Remix, a platform for modders to create stunning RTX remasters of classic games, delivers generative AI tools that can transform basic textures from classic games into modern, 4K-resolution, physically based rendering materials. Several projects have already been released or are in the works, including Half-Life 2 RTX and Portal with RTX.

AI for Creators

AI is unlocking creative potential by reducing or automating tedious tasks, freeing up time for pure creativity. These features run fastest or solely on PCs with NVIDIA RTX or GeForce RTX GPUs.

Adobe Premiere Pro’s AI-powered Enhance Speech tool removes unwanted noise and improves dialogue quality.

Adobe Premiere Pro’s Enhance Speech tool is accelerated by RTX, using AI to remove unwanted noise and improve the quality of dialogue clips so they sound professionally recorded. It’s up to 4.5x faster on RTX vs. Mac. Another Premiere feature, Auto Reframe, uses GPU acceleration to identify and track the most relevant elements in a video and intelligently reframes video content for different aspect ratios.

Another time-saving AI feature for video editors is DaVinci Resolve’s Magic Mask. Previously, if editors needed to adjust the color/brightness of a subject in one shot or remove an unwanted object, they’d have to use a combination of rotoscoping techniques or basic power windows and masks to isolate the subject from the background.

Magic Mask has completely changed that workflow. With it, simply draw a line over the subject and the AI will process for a moment before revealing the selection. And GeForce RTX laptops can run the feature 2.5x faster than the fastest non-RTX laptops.

This is just a sample of the ways that AI is increasing the speed of creativity. There are now more than 125 AI applications accelerated by RTX.

AI for Developers

AI is enhancing the way developers build software applications through scalable environments, hardware and software optimizations, and new APIs.

NVIDIA AI Workbench helps developers quickly create, test and customize pretrained generative AI models and LLMs using PC-class performance and memory footprint. It’s a unified, easy-to-use toolkit that can scale from running locally on RTX PCs to virtually any data center, public cloud or NVIDIA DGX Cloud.

After building AI models for PC use cases, developers can optimize them using NVIDIA TensorRT — the software that helps developers take full advantage of the Tensor Cores in RTX GPUs.

TensorRT acceleration is now available in text-based applications with TensorRT-LLM for Windows. The open-source library increases LLM performance and includes pre-optimized checkpoints for popular models, including Google’s Gemma, Meta Llama 2, Mistral and Microsoft Phi-2.

Developers also have access to a TensorRT-LLM wrapper for the OpenAI Chat API. With just one line of code change, continue.dev — an open-source autopilot for VS Code and JetBrains that taps into an LLM — can use TensorRT-LLM locally on an RTX PC for fast, local LLM inference using this popular tool.

Every week, we’ll demystify AI by making the technology more accessible, and we’ll showcase new hardware, software, tools and accelerations for RTX AI PC users.

The iPhone moment of AI is here, and it’s just the beginning. Welcome to AI Decoded.

Get weekly updates directly in your inbox by subscribing to the AI Decoded newsletter.

❌