FreshRSS

Zobrazení pro čtení

Jsou dostupné nové články, klikněte pro obnovení stránky.

AI/ML’s Role In Design And Test Expands

The role of AI and ML in test keeps growing, providing significant time and money savings that often exceed initial expectations. But it doesn’t work in all cases, sometimes even disrupting well-tested process flows with questionable return on investment.

One of the big attractions of AI is its ability to apply analytics to large data sets that are otherwise limited by human capabilities. In the critical design-to-test realm, AI can address problems such as tool incompatibilities between the design set-up, simulation, and ATE test program, which typically slows debugging and development efforts. Some of the most time-consuming and costly aspects of design-to-test arise from incompatibilities between tools.

“During device bring-up and debug, complex software/hardware interactions can expose the need for domain knowledge from multiple teams or stakeholders, who may not be familiar with each other’s tools,” said Richard Fanning, lead software engineer at Teradyne. “Any time spent doing conversions or debugging differences in these set-ups is time wasted. Our toolset targets this exact problem by allowing all set-ups to use the same set of source files so everyone can be sure they are running the same thing.”

ML/AI can help keep design teams on track, as well. “As we drive down this technology curve, the analytics and the compute infrastructure that we have to bring to bear becomes increasingly more complex and you want to be able to make the right decision with a minimal amount of overkill,” said Ken Butler, senior director of business development in the ACS data analytics platform group at Advantest. “In some cases, we are customizing the test solution on a die-by-die type of basis.”

But despite the hype, not all tools work well in every circumstance. “AI has some great capabilities, but it’s really just a tool,” said Ron Press, senior director of technology enablement at Siemens Digital Industries Software, in a recent presentation at a MEPTEC event. “We still need engineering innovation. So sometimes people write about how AI is going to take away everybody’s job. I don’t see that at all. We have more complex designs and scaling in our designs. We need to get the same work done even faster by using AI as a tool to get us there.”

Speeding design to characterization to first silicon
In the face of ever-shrinking process windows and the lowest allowable defectivity rates, chipmakers continually are improving the design-to-test processes to ensure maximum efficiency during device bring-up and into high volume manufacturing. “Analytics in test operations is not a new thing. This industry has a history of analyzing test data and making product decisions for more than 30 years,” said Advantest’s Butler. “What is different now is that we’re moving to increasingly smaller geometries, advanced packaging technologies and chiplet-based designs. And that’s driving us to change the nature of the type of analytics that we do, both in terms of the software and the hardware infrastructure. But from a production test viewpoint, we’re still kind of in the early days of our journey with AI and test.”

Nonetheless, early adopters are building out the infrastructure needed for in-line compute and AI/ML modeling to support real-time inferencing in test cells. And because no one company has all the expertise needed in-house, partnerships and libraries of applications are being developed with tool-to-tool compatibility in mind.

“Protocol libraries provide out-of-the-box solutions for communicating common protocols. This reduces the development and debug effort for device communication,” said Teradyne’s Fanning. “We have seen situations where a test engineer has been tasked with talking to a new protocol interface, and saved significant time using this feature.”

In fact, data compatibility is a consistent theme, from design all the way through to the latest developments in ATE hardware and software. “Using the same test sequences between characterization and production has become key as the device complexity has increased exponentially,” explained Teradyne’s Fanning. “Partnerships with EDA tool and IP vendors is also key. We have worked extensively with industry leaders to ensure that the libraries and test files they output are formats our system can utilize directly. These tools also have device knowledge that our toolset does not. This is why the remote connect feature is key, because our partners can provide context-specific tools that are powerful during production debug. Being able to use these tools real-time without having to reproduce a setup or use case in a different environment has been a game changer.”

Serial scan test
But if it seems as if all the configuration changes are happening on the test side, it’s important to take stock of substantial changes on the approach to multi-core design for test.

Tradeoffs during the iterative process of design for test (DFT) have become so substantial in the case of multi-core products that a new approach has become necessary.

“If we look at the way a design is typically put together today, you have multiple cores that are going to be produced at different times,” said Siemens’ Press. “You need to have an idea of how many I/O pins you need to get your scan channels, the deep serial memory from the tester that’s going to be feeding through your I/O pins to this core. So I have a bunch of variables I need to trade off. I have the number of pins going to the core, the pattern size, and the complexity of the core. Then I’ll try to figure out what’s the best combination of cores to test together in what is called hierarchical DFT. But as these designs get more complex, with upwards of 2,500 cores, that’s a lot of tradeoffs to figure out.”

Press noted that applying AI with the same architecture can provide a 20% to 30% higher efficiency, but an improved methodology based on packetized scan test (see figure 1) actually makes more sense.


Fig. 1: Advantages to the serial scan network (SSN) approach. Source: Siemens

“Instead of having tester channels feeding into the scan channels that go to each core, you have a packetized bus and packets of data that feed through all the cores. Then you instruct the cores when their packet information is going to be available. By doing this, you don’t have as many variables you need to trade off,” he said. At the core level, each core can be optimized for any number of scan channels and patterns, and the I/O pin count is no longer a variable in the calculation. “Then, when you put it into this final chip, it deliver from the packets the amount of data you need for that core, that can work with any size serial bus, in what is called a serial scan network (SSN).”

Some of the results reported by Siemens EDA customers (see figure 2) highlight both supervised and unsupervised machine learning implementation for improvements in diagnosis resolution and failure analysis. DFT productivity was boosted by 5 to 10X using the serial scan network methodology.


Fig. 2: Realized benefits using machine learning and the serial scan network approach. Source: Siemens

What slows down AI implementation in HVM?
In the transition from design to testing of a device, the application of machine learning algorithms can enable a number of advantages, from better pairing of chiplet performance for use in an advanced package to test time reduction. For example, only a subset of high-performing devices may require burn-in.

“You can identify scratches on wafers, and then bin out the dies surrounding those scratches automatically within wafer sort,” said Michael Schuldenfrei, fellow at NI/Emerson Test & Measurement. “So AI and ML all sounds like a really great idea, and there are many applications where it makes sense to use AI. The big question is, why isn’t it really happening frequently and at-scale? The answer to that goes into the complexity of building and deploying these solutions.”

Schuldenfrei summarized four key steps in ML’s lifecycle, each with its own challenges. In the first phase, the training, engineering teams use data to understand a particular issue and then build a model that can be used to predict an outcome associated with that issue. Once the model is validated and the team wants to deploy it in the production environment, it needs to be integrated with the existing equipment, such as a tester or manufacturing execution system (MES). Models also mature and evolve over time, requiring frequent validation of the data going into the model and checking to see that the model is functioning as expected. Models also must adapt, requiring redeployment, learning, acting, validating and adapting, in a continuous circle.

“That eats up a lot of time for the data scientists who are charged with deploying all these new AI-based solutions in their organizations. Time is also wasted in the beginning when they are trying to access the right data, organizing it, connecting it all together, making sense of it, and extracting features from it that actually make sense,” said Schuldenfrei.

Further difficulties are introduced in a distributed semiconductor manufacturing environment in which many different test houses are situated in various locations around the globe. “By the time you finish implementing the ML solution, your model is stale and your product is probably no longer bleeding edge so it has lost its actionability, when the model needs to make a decision that actually impacts either the binning or the processing of that particular device,” said Schuldenfrei. “So actually deploying ML-based solutions in a production environment with high-volume semiconductor test is very far from trivial.”

He cited a 2014 Google article that stated how the ML code development part of the process is both the smallest and easiest part of the whole exercise, [1] whereas the various aspects of building infrastructure, data collection, feature extraction, data verification, and managing model deployments are the most challenging parts.

Changes from design through test ripple through the ecosystem. “People who work in EDA put lots of effort into design rule checking (DRC), meaning we’re checking that the work we’ve done and the design structure are safe to move forward because we didn’t mess anything up in the process,” said Siemens’ Press. “That’s really important with AI — what we call verifiability. If we have some type of AI running and giving us a result, we have to make sure that result is safe. This really affects the people doing the design, the DFT group and the people in test engineering that have to take these patterns and apply them.”

There are a multitude of ML-based applications for improving test operations. Advantest’s Butler highlighted some of the apps customers are pursuing most often, including search time reduction, shift left testing, test time reduction, and chiplet pairing (see figure 3).

“For minimum voltage, maximum frequency, or trim tests, you tend to set a lower limit and an upper limit for your search, and then you’re going to search across there in order to be able to find your minimum voltage for this particular device,” he said. “Those limits are set based on process split, and they may be fairly wide. But if you have analytics that you can bring to bear, then the AI- or ML-type techniques can basically tell you where this die lies on the process spectrum. Perhaps it was fed forward from an earlier insertion, and perhaps you combine it with what you’re doing at the current insertion. That kind of inference can help you narrow the search limits and speed up that test. A lot of people are very interested in this application, and some folks are doing it in production to reduce search time for test time-intensive tests.”


Fig. 3: Opportunities for real-time and/or post-test improvements to pair or bin devices, improve yield, throughput, reliability or cost using the ACS platform. Source: Advantest

“The idea behind shift left is perhaps I have a very expensive test insertion downstream or a high package cost,” Butler said. “If my yield is not where I want it to be, then I can use analytics at earlier insertions to be able to try to predict which devices are likely to fail at the later insertion by doing analysis at an earlier insertion, and then downgrade or scrap those die in order to optimize downstream test insertions, raising the yield and lowering overall cost. Test time reduction is very simply the addition or removal of test content, skipping tests to reduce cost. Or you might want to add test content for yield improvement,” said Butler.

“If I have a multi-tiered device, and it’s not going to pass bin 1 criteria – but maybe it’s bin 2 if I add some additional content — then people may be looking at analytics to try to make those decisions. Finally, two things go together in my mind, this idea of chiplet designs and smart pairing. So the classic example is a processor die with a stack of high bandwidth memory on top of it. Perhaps I’m interested in high performance in some applications and low power in others. I want to be able to match the content and classify die as they’re coming through the test operation, and then downstream do pick-and-place and put them together in such a way that I maximize the yield for multiple streams of data. Similar kinds of things apply for achieving a low power footprint and carbon footprint.”

Generative AI
The question that inevitably comes up when discussing the role of AI in semiconductors is whether or not large language models like ChatGPT can prove useful to engineers working in fabs. Early work shows some promise.

“For example, you can ask the system to build an outlier detection model for you that looks for parts that are five sigma away from the center line, saying ‘Please create the script for me,’ and the system will create the script. These are the kinds of automated, generative AI-based solutions that we’re already playing with,” says Schuldenfrei. “But from everything I’ve seen so far, there is still quite a lot of work to be done to get these systems to provide outputs with high enough quality. At the moment, the amount of human interaction that is needed afterward to fix problems with the algorithms or models that generative AI is producing is still quite significant.”

A lingering question is how to access the test programs needed to train the new test programs when everyone is protecting important test IP? “Most people value their test IP and don’t necessarily want to set up guardrails around the training and utilization processes,” Butler said. “So finding a way to accelerate the overall process of developing test programs while protecting IP is the challenge. It’s clear this kind of technology is going to be brought to bear, just like we already see in the software development process.”

Failure analysis
Failure analysis is typically a costly and time-consuming endeavor for fabs because it requires a trip back in time to gather wafer processing, assembly, and packaging data specific to a particular failed device, known as a returned material authorization (RMA). Physical failure analysis is performed in an FA lab, using a variety of tools to trace the root cause of the failure.

While scan diagnostic data has been used for decades, a newer approach involves pairing a digital twin with scan diagnostics data to find the root cause of failures.

“Within test, we have a digital twin that does root cause deconvolution based on scan failure diagnosis. So instead of having to look at the physical device and spend time trying to figure out the root cause, since we have scan, we have millions and millions of virtual sample points,” said Siemens’ Press. “We can reverse-engineer what we did to create the patterns and figure out where the mis-compare happened within the scan cells deep within the design. Using YieldInsight and unsupervised machine learning with training on a bunch of data, we can very quickly pinpoint the fail locations. This allows us to run thousands, or tens of thousands fail diagnoses in a short period of time, giving us the opportunity to identify the systematic yield limiters.”

Yet another approach that is gaining steam is using on-die monitors to access specific performance information in lieu of physical FA. “What is needed is deep data from inside the package to monitor performance and reliability continuously, which is what we provide,” said Alex Burlak, vice president of test and analytics at proteanTecs. “For example, if the suspected failure is from the chiplet interconnect, we can help the analysis using deep data coming from on-chip agents instead of taking the device out of context and into the lab (where you may or may not be able to reproduce the problem). Even more, the ability to send back data and not the device can in many cases pinpoint the problem, saving the expensive RMA and failure analysis procedure.”

Conclusion
The enthusiasm around AI and machine learning is being met by robust infrastructure changes in the ATE community to accommodate the need for real-time inferencing of test data and test optimization for higher yield, higher throughput, and chiplet classifications for multi-chiplet packages. For multi-core designs, packetized test, commercialized as an SSN methodology, provides a more flexible approach to optimizing each core for the number of scan chains, patterns and bus width needs of each core in a device.

The number of testing applications that can benefit from AI continues to rise, including test time reduction, Vmin/Fmax search reduction, shift left, smart pairing of chiplets, and overall power reduction. New developments like identical source files for all setups across design, characterization, and test help speed the critical debug and development stage for new products.

Reference

  1. https://proceedings.neurips.cc/paper_files/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf

The post AI/ML’s Role In Design And Test Expands appeared first on Semiconductor Engineering.

Chip Aging Becoming Key Factor In Data Center Economics

Chip aging is becoming a much bigger concern inside of data centers, where it can impact server uptime, utilization rates, and the amount of energy needed to drive signals and cool entire server racks.

Aging in chips is the result of both higher logic utilization and increasing transistor density. This is problematic for data centers, in general, but especially for AI chips where digital logic is expected to run at maximum speed. That generates more heat, which becomes harder to dissipate as the number specialized and general-purpose processing elements per square millimeter of silicon continues to rise. Heat typically gets trapped between the fins of finFETs and gate-all-around FETs, accelerating electromigration and reducing the time it takes for dielectrics to break down. It also can cause warpage, which can rupture the bonds and contacts between different components in an advanced package or on a PCB.

For data centers, that creates a number of challenges:

  • Thermal management: This requires a deep understanding of workloads and the resulting transient thermal gradients as processing is load-balanced on-chip, between chips or chiplets, and between servers;
  • More data: Data from sensors everywhere, along with larger training sets, all need to be processed faster than in the past to keep up with the flood of data, but all of that needs to happen in the same or smaller footprint without overheating any part of a device, and
  • In-circuit monitoring: Sensors can be added into chips to detect variations in heat and data speeds in different paths, but it’s much more difficult to keep track of tens of thousands of these monitors as they collect data from heterogeneous processing elements, each of which can age at different rates depending on process variation, defectivity, varying workloads, and ambient thermal conditions.

“Servers are much more capable today than they were 10 years ago, and the issue is that power hasn’t scaled like it used to,” said Steven Woo, Rambus fellow and distinguished inventor. “Now, if you want to do lots more work in your server, you have to burn more power to do it. Twenty years ago, a server might dissipate a couple hundred watts. But with the latest servers that NVIDIA just announced around Grace Blackwell, the whole rack is 120 kilowatts, and the individual servers are many kilowatts. Just delivering power into those racks is causing changes in the infrastructure in the industry. Now that you have to bring in and dissipate more power in a small space, you get all kinds of interesting things that could happen over time. The heat that’s being dissipated can have effects on the chip, and you have to worry sometimes about thermal cycling where, as the chip is doing a lot of work, maybe part of the chip stops and then it does more work. You get these rapid cycles of dissipating a lot of power, then not, then dissipating a lot of power, then not. That cycling causes local heating and cooling, leading to thermal stresses, and this impacts all chips, including memory.”

As a result, everyone from the data center manager to the chip architect now has to understand how a chip behaves in the field, and how increasingly customized chip and system architectures will function over time. Downtime is costly for a data center, but under-utilization and reduced performance also carries a high price tag. That, in turn, affects how much margin is considered essential, such as extra data paths if some of them are fully or partially closed off by electromigration, and how that margin will impact performance, power, and area/cost over a chip’s projected lifetime — especially in a heterogeneous design with specialized compute elements.

“When it comes to the hyper-scalers and high powered, highly customized, heterogeneous chips for various different workloads, these chips are on 24/7, so consistent uptime is critical,” said Dan Lee, product management director at Cadence. “Since all of these chips are done at the really advanced nodes, with the smaller device sizes, more developers are looking to do aging analysis, and derive the wear and tear so they can see if the chip is going to last a year or five years. At the same time, an important consideration is also thermal — especially when we’re talking about these heterogeneous integrations, and you don’t really get the thermal conductivity that you would in a straightforward, monolithic design. There’s a bit more thought or planning that needs to be a part of this because aging and heating are related. All things being equal, if you’re operating in a very hot environment, you’re going to expect a lower lifespan.”

Still, determining how much shorter that lifespan will be isn’t always a precise calculation. “Data center SoCs that execute mission-critical workloads need to provide scalable visibility, predict problems before they occur, provide deep-dive analyses into problems, and be optimized to increase longevity of investment,” said Padmakumar Karthik, senior technology manager at Arm. “Data center diagnostic patterns are often deployed to measure the health of an SoC post-manufacturing to prevent silent data corruption (SDC) issues. But on-chip sensors provide an additional layer of insights, detecting droops or aging or thermal events on-chip, all of which can cause SDC incidents. For this reason, scalable, customizable sensor frameworks that can monitor and adapt throughout the useful life of the device, enabling continuous design optimization and preventive maintenance, will be increasingly important.”

There are multiple ways to achieve this, but each data center can be very different. In some cases, chips are designed by systems companies for internal use. And in most cases, there is a mix of different hardware and software, not all of which is state-of-the-art. “Many data centers have legacy infrastructure that may not be inherently designed for optimal power efficiency,” noted Noam Brousard, vice president of systems at proteanTecs, in a recent blog. “Upgrading or retrofitting such infrastructure poses challenges in achieving comprehensive power optimization.”

Even within a single rack, stresses can vary greatly from one server to the next, and from one chip to the next even in the same server. “You can imagine when you have a very big chip, toward the edges of the chip it will expand more than in a small chip, and that can add stress,” said Rambus’ Woo. “You have to really be careful about how you cool things, and memory is no different. You have very specific things you worry about with memory, like the ability to retain data, depending on how hot the chip is.”

In addition, as chips age, parameters drift. Marc Swinnen, director of product marketing in Ansys’ semiconductor division, said the traditional approach has been to use a library that’s characterized as a brand new chip. “The library is characterized at 1 year, 5 years, 10 years, 15 years, and you can run all your analysis multiple times with these different aged libraries. That sounds good on paper, and that’s what a lot of people do, but the problem is that not all parts of the chip age at the same rate. This is why aging is often associated with activity and temperature. Some parts of the chip are more active and hotter than other parts of the chip, so the aging time runs differently for different parts. This means you want to apply some of the old library to some parts of the chip, and the younger library to other parts of the chip, because if signals run between them you have setup and hold issues. If everything slows down at the same time — or one slows down and the other one doesn’t — you’re going to get mismatches, and that’s the difficulty. At the bottom level, it’s easy. Every gate is assigned its right age. That’s simple. You do an analysis with every gate. But how do you assign the age to every gate? Where do you get that information from? You need a lot of realistic activity, and then predict that over the lifespan and with temperature. That’s the problem. How do you actually construct this aging map? Once you have it, the analysis is not that hard.”

Aging maps are application- and workload-specific. Every chip will age differently depending on the functions it performs.

But aging is just one of many factors that affect data center uptime. “When we look at data center, we look at the whole application first, then whittle it down to what that means for chips and packages,” said Kelly Morgan, senior principal application engineer at Ansys. “From the mechanical reliability lens of the data center operation, we go through thermal cycling, obviously. We’re in a controlled environment. But what does that influence? How does that influence the integrity of the chips as you go through thermal cycles? Typically, we’ll look at things like solder fatigue and other effects.”

Another factor to consider is shipping and handling, which can affect the aging of a chip, package, and board.

“Even before the device is put in place, there are opportunities for vibration,” Morgan said. “You might hit something, which is a bit of a shock. We have customers who are looking at things like drop, shock, and vibration, and they have goals they need to test to. Typically, the standard process is to do a lot of physical testing. Now as you can imagine, that can be pretty challenging. You have to be pretty far along in the design process before you really start to go and test, and if there’s an issue, then you’ve got to go back and retest. Early simulation helps here, especially for those larger-scale events, and that comes down to the chassis, the board, to all the components, including the ICs.”


Fig. 1: Components of complete electronic system analysis. Source: Ansys

Quality control remains a big challenge when it comes to mechanical stresses that can affect aging. Adam Cron, distinguished architect at Synopsys, pointed to a recent Intel white paper, which noted that at the current acceptable defectivity rates, one core fails every two days. To account for this, Cron noted that certain commercial tools support in-system delay testing in a BiST mode. By adding specific IP, any ATPG patterns could be added to that. (Intel’s paper said its solution only applies to stuck-at testing.)

“In very large, millions-of-cores data center-type environments, the implication is that you’d better be ready,” Cron said. “One of the things they were talking about in this paper was in-system scan. Intel was bringing a database of test patterns in, and then applying it in-system after isolating a core. And then, upon a failure, they’d quarantine and move on. But the data centers are apparently running out of that opportunistic time slot to do any of this. We’ve heard some interesting conversations about the fact that people do run a lot of things during certain times. However, other times are cheaper, so all the holes are just getting filled in terms of runtime. Monitors are certainly something to look at, but monitors are looking at systemic degradation. That’s known, if you will. And so as things degrade, Vmin will change, maybe frequency will change. And they’ll be on a pace. They can figure out when to do that. That’s easy enough to figure out. However, if there’s a marginality or some broken component in there, it is not up to the tool to find that. And frankly, the in-system scan wasn’t addressing all components on the die. It was only up to like 80% of stuck-at coverage, which isn’t that much, especially when you’re not looking at all of the pieces inside the die. The point is, there are still opportunities to do better.”

Cron noted that one big systems company suggested a dual-core lockstep mechanism, starting out the data center in dual-core lock-step mode for X number of months. “When it looks like you’ve squeezed the major part of the curve out, in terms of finding these defective components, then unlock them, double your capacity, run like that for a while, and periodically hook some back up again. That means everything is utilized, at least. Of course, some are working at half capacity here and there, but it’s not the whole die. And there are some implications there from a design standpoint, at least for the hardware, but also possibly the operating system, depending on who decides what physical core is used versus what virtual core is used.”

Approaches to measuring aging
Any discussion around aging circuits really boils down to extending the life of the machines in the data center, and not getting caught by surprise when failures occur.

“How do you do that? You have to measure the aging of those machines,” said Neil Hand, director of marketing, IC segment at Siemens EDA. “Right now, if you speak to the CIOs of these big companies with big data centers, they say, ‘We’ve got to get rid of the machines after three years because we can’t risk it going down.’ If you look at embedded analytics capabilities, you can start to embed aging monitors in those devices, you can start to monitor those in real time. It doesn’t look that different than what it does from an automotive perspective. It’s all the same technologies, effectively, but you’re monitoring them. And then you can say, ‘We’re now at 90% of our life for this server.’ We can then just replace that server.”

This feeds into corporate goals around sustainability, as well. “It comes down to building the best thing to begin with, then building it with design for manufacturing in mind so that you don’t get waste during manufacturing, achieve better yields, and finally extend the life of products and build them in environmentally-sustainable ways,” Hand said. “If you can extend the data center lifecycle from three years to five years, that’s big. And especially if you start going to these high-performance, application-specific type of clusters, you may not need to change them as often, because if the underlying capabilities aren’t changing, that might drive the cycling of it. In the case of a biological computer, if there’s no new change to the underlying protein folding mechanisms, you might say, ‘We don’t need a new compute platform. This is really good.”

The longer the product life can be extended, the better. Design for aging is a matter of, first, performing the aging analysis with the foundry models. “Run the simulations and observe the effects,” said Cadence’s Lee. “When you’re doing the simulation, you want to have the right mission profiles, so you come up with an accurate prediction of how your device is going to behave after a certain number of years in deployment. You may want to combine that with thermal analysis, for example, because how that aging is going to behave will depend on what temperature this design is going to be working at. You may think it’s 22 degrees Celsius, but maybe through some thermal analysis you realize it’s actually going to be operating at 35 or 40 degrees most of the time. That may change the outcome of your aging analysis.”

In terms of the associated thermal analysis, this can extend beyond a single device. “It’s also how that heat is moving,” Lee said. “Let’s say you have this integrated design, where you have some power devices alongside some logic, or some other functionality that is lower power. What you may want to understand is, if those bandgaps or power circuits are generating a lot of heat, that may be shifting over into other parts of your design. So when you run your aging analysis, you may assume that you’re running at 25 degrees, whereas the power devices are at 40 or 45 degrees. They’re on the same chip, they’re very close to each other, and you have to understand how much of that heat is moving over to your logic and what that’s going to bring the temperature up to. You want to know that so you can perform the aging analysis based on that higher temperature.”

Another consideration is combining aging analysis and interconnect parasitics, which is especially relevant for advanced nodes due to the parasitics in the interconnect. “They’re dominant when it comes to performance and functionality,” Lee added. “So when thinking about aging, you also have to think about it being an aged device that has to push the electrons through this interconnect. That’s a pretty heavy load. When you’re doing the aging analysis, you probably will have to be doing it with extracted parasitics. You just can’t do it on a pure schematic design. It doesn’t give you enough detail about what’s really happening physically. This may be included in the aging analysis tool. When most people talk about aging, they may not think about the parasitic aspect to it.”

Combating aging, thermal in memory
While standards don’t work in custom silicon, they do work for some standard components in those devices, such as memory. Over the past 10 to 15 years, memory standards have started to address the impact of heat.

“If you start to exceed certain temperature limits, you’ve got to refresh the device more frequently because the charge can leak off the cells more quickly,” said Rambus’ Woo. “So there are temperature-dependent refresh rates. There are other things that can be exacerbated, like the capacitors are getting smaller, they’re holding fewer electrons because there are so many more of them on a chip now, so we’ve seen memories adopt on-die error correction. This on-die error correction is something that is hidden from the outside world. In many cases, you don’t even know an error has occurred and been corrected on the chip. Those kinds of technologies become even more important now because the temperatures can be higher.”

There also is growing demand for more telemetry to provide monitoring information. “You just want to know if anything is overheating,” said Woo. “Does something seem like it’s malfunctioning? The data center manager will get regular updates about the status of the major components of the system. A lot of boards now in servers have baseboard management controllers (BMCs), which are little chips that sit on each board and are responsible for, among other things, reporting back the health of that board when a server might have five or six boards. We’re frequently seeing more of these BMC chips.”

Design for aging
While the goal is to be able to guarantee a certain lifetime for the chips in a data center, the challenges for achieving that are expanding. “There’s a growing list of things that can be harmful to devices over their lifetime,” Woo said. “It’s a balance between not adding too much cost, even though you have to increase the reliability and maybe add new features, and all of these things are in play with each other.”

Whether it is liquid cooling or higher levels of RAS ECC in the system, there is no single best answer for every application. In general, the industry is moving toward higher reliability and increasing resilience, but there are many ways to get there and challenges with each of them.

“Just as 15 years ago we didn’t necessarily always think we had to talk about power, now we have to talk about it all the time,” Woo said. “The same thing is going to be true for resilience and reliability. It’s going to be required to become part of the way people think about architectures, and part of that is how the memory system improves its reliability. You can’t really do anything unless you can compute on some data, and you have to make sure that data is reliable. It will touch how memory is stored in a DRAM. It will touch how memory is communicated across links. And it even will touch how processors manipulate data once they get a hold of it in their caches, and in the compute pipelines. Also, one of the key things people will worry about is how much of that susceptibility is brought about by age-related issues, like heating cycles, etc.”

Finally, there are even issues around the quality of the power that comes into a system. “The servers get noise on the power rails, and it’s a balance between how much money you’re willing to pay for the power delivery versus the quality of power,” said Woo. “You have to be tolerant of those kinds of things, too. Power management becomes more challenging, as well as the amount of power that these systems are using today. NVIDIA systems bring 48-volt power into the racks, and there is talk about even higher voltage levels. Those changes in infrastructure can all impact heat, and can age components differently.”

The post Chip Aging Becoming Key Factor In Data Center Economics appeared first on Semiconductor Engineering.

Chip Industry Week In Review

Synopsys refocused its security priorities around chips, striking a deal to sell off its Software Integrity Group subsidiary to private equity firms Clearlake Capital Group and Francisco Partners for about $2.1 billion. That deal comes on the heels of Synopsys’ recent acquisition of Intrinsic ID, which develops physical unclonable function IP. Sassine Ghazi, Synopsys’ president and CEO, said in an interview that the sale of the software group “gives us the ability to have management bandwidth, capital, and to double down on what we’re doing in our core business.”

The U.S. Commerce Department reportedly pulled export licenses from Intel and Qualcomm that permitted them to ship semiconductors to Huawei, the Financial Times reported. The move comes after advanced chips from Intel reportedly were used in new laptops and smartphones from the China-based company. 

Apple debuted its second-generation 3nm M4 chip with the launch of the new iPad Pro. The CPU and GPU each have up to 10 cores, with a neural engine capable of 38 TOPS, and a total of 28 billion transistors. Apple also is working with TSMC to develop its own AI processors for running software in data centers, reports The Wall Street Journal.

The U.S. is expected to triple its semiconductor manufacturing capacity by 2032, according to a new report by the Semiconductor Industry Association and Boston Consulting. By that year, the U.S. is projected to have 28% of global capacity for advanced logic manufacturing and over a quarter of total global capital expenditures.

Fig. 1: Source: Semiconductor Industry Association and Boston Consulting Group.

Quick links to more news:

Global
Market Reports
Automotive
Security
Product News
Education and Training
Research
In-Depth
Events
Further Reading

Around The Globe

The U.S. Commerce Department plans to solicit bids from organizations interested in creating and managing a new CHIPS Manufacturing USA institute focused on digital twins in the semiconductor sector. The government will award up to $285 million to the selected proposal.

The U.S. National Science Foundation and Department of Energy announced the first 35 projects to be supported with computational time through the National Artificial Intelligence Research Resource (NAIRR) Pilot. The initial selected projects will gain access to several U.S. supercomputing centers and other resources, with the goal of advancing responsible AI research.

Through its new Federal AI Sandbox, MITRE is offering up its computing power to U.S. government agencies. “Our new Federal AI Sandbox will help level the playing field, making the high-quality compute power needed to train and test custom AI solutions available to any agency,” stated Charles Clancy, MITRE, senior vice president and chief technology officer, in the release.

Saudi Arabia’s $100 billion investment fund for semiconductor and AI technology pledged it would divest from China if requested by the U.S, reported Bloomberg.

Japan’s SoftBank is holding talks with UK-based AI Chip firm Graphcore about a possible acquisition, reports Bloomberg.

India’s chip industry is heating up. Mindgrove launched the country’s first SoC, named Secure IoT. The chip clocks at 700 MHz, and the company is touting its key security algorithms, secure boot, and on-chip OTP memory. Meanwhile, Lam Research is expanding its global semiconductor fabrication supply chain to include India.

Microsoft will build a $3.3 billion AI data center in Racine, Wisconsin, the same location as the failed Foxconn investment touted six years ago.

Markets And Money

The SIA announced first-quarter global semiconductor sales grew more than 15% YoY, still 5.7% below Q4 2023, but a big improvement over last year. Consider that the semiconductor materials market contracted 8.2% in 2023 to $66.7 billion, down from a record $72.7 billion in 2022, according to a new report from SEMI.

The demand for AI-powered consumer electronics will drive global AI chipset shipments to 1.3 billion by 2030, according to ABI Research.

TrendForce released several new industry reports this week. Among the highlights:

  • HBM prices are expected to increase by up to 10% in 2025, representing more than 30% of total DRAM value.
  • In Q2, DRAM contract prices rose 13% to 18%, while NAND flash prices increased 15% to 20%.
  • The top 10 design firms’ combined revenue increased 12% in 2023, with NVIDIA taking the lead for the first time.

A number of acquisitions were announced recently:

  • High-voltage IC company, Power Integrations, will purchase the assets of Odyssey Semiconductor Technologies, a developer of gallium nitride (GaN) transistors.
  • Mobix Labs agreed to buy RF design company RaGE Systems for $20 million in cash, stock, and incentives.
  • V-Tek, a packaging services and inspection company, acquired A&J Programming, a manufacturer of automated handling and programming equipment.

The global smartphone market grew 6% year-over-year, shipping 296.9 million units in Q124, according to a Counterpoint report.  Samsung toppled Apple for the top spot with a 20% share.

Automotive

U.S. Justice Department is investigating whether Tesla committed securities or wire fraud for misleading consumers and investors about its EV’s autopilot capabilities, according to Reuters.

The automotive ecosystem is undergoing a huge transformation toward software-defined vehicles, spurring new architectures that can be future-proofed and customized with software.

Infineon introduced a microcontroller for the automotive battery management sector, integrating high-precision analog and high-voltage subsystems on a single chip. Infineon also inked a deal with China’s Xiaomi to provide SiC power modules for Xiaomi’s new SU7 smart EV.

Keysight and ETAS are teaming up to embed ETAS fuzz testing software into Keysight’s automotive cybersecurity platform.

Also, Keysight’s device security research lab, Riscure Security Solutions, can now conduct vehicle type approval evaluations under United Nations R155/R156 regulations. Keysight acquired Riscure in March.

Two autonomous driving companies received big funding. British AI company Wayve received a $1.05 billion Series C investment from SoftBank, with contributions from NVIDIA and Microsoft. Hyundai spent an additional $475 million on Motional, according its recent earnings report.

The automotive imaging market grew to U.S. $5.7 billion in 2023 due to increased production, autonomy demand, and higher-resolution offerings.

Automotive Grade Linux (AGL), a collaborative cross-industry effort developing an open source platform for all Software-Defined Vehicles (SDVs), released cloud-native functionality, RISC-V architecture and flutter applications.

Security

SRAM security concerns are intensifying as a combination of new and existing techniques allow hackers to tap into data for longer periods of time after a device is powered down. This is particularly alarming as the leading edge of design shifts to heterogeneous systems in package, where chiplets frequently have their own memory hierarchy.

Machine learning is being used by hackers to find weaknesses in chips and systems, but it also is starting to be used to prevent breaches by pinpointing hardware and software design flaws.

txOne Networks, provider of Cyber-Physical Systems security, raised $51 million in Series B extension round of funding.

The U.S. Department of Justice charged a Russian national with his role as the creator, developer and administrator of the LockBit, a prolific ramsomware group, that allegedly stole $100 million in payments from 2,000 victims.

The Cybersecurity and Infrastructure Security Agency (CISA) launched “We Can Secure Our World,” a new public awareness program promoting “basic cyber hygiene” and the agency also issues a number of alerts/advisories.

Product News

Siemens unveiled its Solido IP Validation Suite software, an automated quality assurance product designed to work across all design IP types and formats. The suite includes Solido Crosscheck and IPdelta software, which both provide in-view, cross-view and version-to-version QA checks.

proteanTecs announced its lifecycle monitoring solution is being integrated into SAPEON’s new AI processors.

SpiNNcloud Systems revealed their SpiNNaker2 system, an event-based AI platform supercomputer containing chips that are a mesh of 152 ARM-based cores. The platform has the ability to emulate 10 billion neurons while still maintaining power efficiency and reliability.

Ansys partnered with Schrodinger to develop new computational materials. The collaboration will see Schrodinger’s molecular modeling technology used in Ansys’ simulation tools to evaluate performance ahead of the prototype phase.

Keysight introduced a pulse generator to its handheld radio frequency analyzer software options. The Option 357 pulse generator is downloadable on B- and C-Series FieldFox analyzers.

Education and Training

Semiconductor fever is hitting academia:

  • Penn State discussed its role in leading 15 universities to drive advances in chip integration and packaging.
  • Georgia Tech’s explained its research is happening at all the levels of the “semiconductor stack,” touting its 28,500 square feet of academic cleanroom space.
  • And in the past month Purdue University, Dassault Systems and Lam Research expanded an existing deal to use virtual twins and simulation tools in workforce development.

Arizona State University is beefing up their technology programs with a new bachelor’s and doctoral degree in robotics and autonomous systems.

Microsoft is partnering with Gateway Technical College in Wisconsin to create a Data Center Academy to train Wisconsinites for data center and STEM roles by 2030.

Research

Stanford-led researchers used ordinary-appearing glasses for an augmented reality headset, utilizing waveguide display techniques, holographic imaging, and AI.

UC Berkeley, LLNL, and MIT engineered a miniaturized on-chip energy storage and power delivery, using an atomic-scale approach to modify electrostatic capacitors.

ORNL and other researchers observed a “surprising isotope effect in the optoelectronic properties of a single layer of molybdenum disulfide” when they substituted heavier isotope of molybdenum in the crystal.

Three U.S. national labs are partnering with NVIDIA to develop advanced memory technologies for high performance computing.

In-Depth

In addition to this week’s Automotive, Security and Pervasive Computing newsletter, here are more top stories and tech talk from the week:

Events

Find upcoming chip industry events here, including:

Event Date Location
ASMC: Advanced Semiconductor Manufacturing Conference May 13 – 16 Albany, NY
ISES Taiwan 2024: International Semiconductor Executive Summit May 14 – 15 New Taipei City
Ansys Simulation World 2024 May 14 – 16 Online
Women In Semiconductors May 16 Albany, NY
European Test Symposium May 20 – 24 The Hague, Netherlands
NI Connect Austin 2024 May 20 – 22 Austin, Texas
ITF World 2024 (imec) May 21 – 22 Antwerp, Belgium
Embedded Vision Summit May 21 – 23 Santa Clara, CA
ASIP Virtual Seminar 2024 May 22 Online
Electronic Components and Technology Conference (ECTC) 2024 May 28 – 31 Denver, Colorado
Hardwear.io Security Trainings and Conference USA 2024 May 28 – Jun 1 Santa Clara, CA
Find All Upcoming Events Here

Upcoming webinars are here.

Further Reading

Read the latest special reports and top stories, or check out the latest newsletters:

Automotive, Security and Pervasive Computing
Systems and Design
Low Power-High Performance
Test, Measurement and Analytics
Manufacturing, Packaging and Materials

The post Chip Industry Week In Review appeared first on Semiconductor Engineering.

Chip Industry Week In Review

Synopsys refocused its security priorities around chips, striking a deal to sell off its Software Integrity Group subsidiary to private equity firms Clearlake Capital Group and Francisco Partners for about $2.1 billion. That deal comes on the heels of Synopsys’ recent acquisition of Intrinsic ID, which develops physical unclonable function IP. Sassine Ghazi, Synopsys’ president and CEO, said in an interview that the sale of the software group “gives us the ability to have management bandwidth, capital, and to double down on what we’re doing in our core business.”

The U.S. Commerce Department reportedly pulled export licenses from Intel and Qualcomm that permitted them to ship semiconductors to Huawei, the Financial Times reported. The move comes after advanced chips from Intel reportedly were used in new laptops and smartphones from the China-based company. 

Apple debuted its second-generation 3nm M4 chip with the launch of the new iPad Pro. The CPU and GPU each have up to 10 cores, with a neural engine capable of 38 TOPS, and a total of 28 billion transistors. Apple also is working with TSMC to develop its own AI processors for running software in data centers, reports The Wall Street Journal.

The U.S. is expected to triple its semiconductor manufacturing capacity by 2032, according to a new report by the Semiconductor Industry Association and Boston Consulting. By that year, the U.S. is projected to have 28% of global capacity for advanced logic manufacturing and over a quarter of total global capital expenditures.

Fig. 1: Source: Semiconductor Industry Association and Boston Consulting Group.

Quick links to more news:

Global
Market Reports
Automotive
Security
Product News
Education and Training
Research
In-Depth
Events
Further Reading

Around The Globe

The U.S. Commerce Department plans to solicit bids from organizations interested in creating and managing a new CHIPS Manufacturing USA institute focused on digital twins in the semiconductor sector. The government will award up to $285 million to the selected proposal.

The U.S. National Science Foundation and Department of Energy announced the first 35 projects to be supported with computational time through the National Artificial Intelligence Research Resource (NAIRR) Pilot. The initial selected projects will gain access to several U.S. supercomputing centers and other resources, with the goal of advancing responsible AI research.

Through its new Federal AI Sandbox, MITRE is offering up its computing power to U.S. government agencies. “Our new Federal AI Sandbox will help level the playing field, making the high-quality compute power needed to train and test custom AI solutions available to any agency,” stated Charles Clancy, MITRE, senior vice president and chief technology officer, in the release.

Saudi Arabia’s $100 billion investment fund for semiconductor and AI technology pledged it would divest from China if requested by the U.S, reported Bloomberg.

Japan’s SoftBank is holding talks with UK-based AI Chip firm Graphcore about a possible acquisition, reports Bloomberg.

India’s chip industry is heating up. Mindgrove launched the country’s first SoC, named Secure IoT. The chip clocks at 700 MHz, and the company is touting its key security algorithms, secure boot, and on-chip OTP memory. Meanwhile, Lam Research is expanding its global semiconductor fabrication supply chain to include India.

Microsoft will build a $3.3 billion AI data center in Racine, Wisconsin, the same location as the failed Foxconn investment touted six years ago.

Markets And Money

The SIA announced first-quarter global semiconductor sales grew more than 15% YoY, still 5.7% below Q4 2023, but a big improvement over last year. Consider that the semiconductor materials market contracted 8.2% in 2023 to $66.7 billion, down from a record $72.7 billion in 2022, according to a new report from SEMI.

The demand for AI-powered consumer electronics will drive global AI chipset shipments to 1.3 billion by 2030, according to ABI Research.

TrendForce released several new industry reports this week. Among the highlights:

  • HBM prices are expected to increase by up to 10% in 2025, representing more than 30% of total DRAM value.
  • In Q2, DRAM contract prices rose 13% to 18%, while NAND flash prices increased 15% to 20%.
  • The top 10 design firms’ combined revenue increased 12% in 2023, with NVIDIA taking the lead for the first time.

A number of acquisitions were announced recently:

  • High-voltage IC company, Power Integrations, will purchase the assets of Odyssey Semiconductor Technologies, a developer of gallium nitride (GaN) transistors.
  • Mobix Labs agreed to buy RF design company RaGE Systems for $20 million in cash, stock, and incentives.
  • V-Tek, a packaging services and inspection company, acquired A&J Programming, a manufacturer of automated handling and programming equipment.

The global smartphone market grew 6% year-over-year, shipping 296.9 million units in Q124, according to a Counterpoint report.  Samsung toppled Apple for the top spot with a 20% share.

Automotive

U.S. Justice Department is investigating whether Tesla committed securities or wire fraud for misleading consumers and investors about its EV’s autopilot capabilities, according to Reuters.

The automotive ecosystem is undergoing a huge transformation toward software-defined vehicles, spurring new architectures that can be future-proofed and customized with software.

Infineon introduced a microcontroller for the automotive battery management sector, integrating high-precision analog and high-voltage subsystems on a single chip. Infineon also inked a deal with China’s Xiaomi to provide SiC power modules for Xiaomi’s new SU7 smart EV.

Keysight and ETAS are teaming up to embed ETAS fuzz testing software into Keysight’s automotive cybersecurity platform.

Also, Keysight’s device security research lab, Riscure Security Solutions, can now conduct vehicle type approval evaluations under United Nations R155/R156 regulations. Keysight acquired Riscure in March.

Two autonomous driving companies received big funding. British AI company Wayve received a $1.05 billion Series C investment from SoftBank, with contributions from NVIDIA and Microsoft. Hyundai spent an additional $475 million on Motional, according its recent earnings report.

The automotive imaging market grew to U.S. $5.7 billion in 2023 due to increased production, autonomy demand, and higher-resolution offerings.

Automotive Grade Linux (AGL), a collaborative cross-industry effort developing an open source platform for all Software-Defined Vehicles (SDVs), released cloud-native functionality, RISC-V architecture and flutter applications.

Security

SRAM security concerns are intensifying as a combination of new and existing techniques allow hackers to tap into data for longer periods of time after a device is powered down. This is particularly alarming as the leading edge of design shifts to heterogeneous systems in package, where chiplets frequently have their own memory hierarchy.

Machine learning is being used by hackers to find weaknesses in chips and systems, but it also is starting to be used to prevent breaches by pinpointing hardware and software design flaws.

txOne Networks, provider of Cyber-Physical Systems security, raised $51 million in Series B extension round of funding.

The U.S. Department of Justice charged a Russian national with his role as the creator, developer and administrator of the LockBit, a prolific ramsomware group, that allegedly stole $100 million in payments from 2,000 victims.

The Cybersecurity and Infrastructure Security Agency (CISA) launched “We Can Secure Our World,” a new public awareness program promoting “basic cyber hygiene” and the agency also issues a number of alerts/advisories.

Product News

Siemens unveiled its Solido IP Validation Suite software, an automated quality assurance product designed to work across all design IP types and formats. The suite includes Solido Crosscheck and IPdelta software, which both provide in-view, cross-view and version-to-version QA checks.

proteanTecs announced its lifecycle monitoring solution is being integrated into SAPEON’s new AI processors.

SpiNNcloud Systems revealed their SpiNNaker2 system, an event-based AI platform supercomputer containing chips that are a mesh of 152 ARM-based cores. The platform has the ability to emulate 10 billion neurons while still maintaining power efficiency and reliability.

Ansys partnered with Schrodinger to develop new computational materials. The collaboration will see Schrodinger’s molecular modeling technology used in Ansys’ simulation tools to evaluate performance ahead of the prototype phase.

Keysight introduced a pulse generator to its handheld radio frequency analyzer software options. The Option 357 pulse generator is downloadable on B- and C-Series FieldFox analyzers.

Education and Training

Semiconductor fever is hitting academia:

  • Penn State discussed its role in leading 15 universities to drive advances in chip integration and packaging.
  • Georgia Tech’s explained its research is happening at all the levels of the “semiconductor stack,” touting its 28,500 square feet of academic cleanroom space.
  • And in the past month Purdue University, Dassault Systems and Lam Research expanded an existing deal to use virtual twins and simulation tools in workforce development.

Arizona State University is beefing up their technology programs with a new bachelor’s and doctoral degree in robotics and autonomous systems.

Microsoft is partnering with Gateway Technical College in Wisconsin to create a Data Center Academy to train Wisconsinites for data center and STEM roles by 2030.

Research

Stanford-led researchers used ordinary-appearing glasses for an augmented reality headset, utilizing waveguide display techniques, holographic imaging, and AI.

UC Berkeley, LLNL, and MIT engineered a miniaturized on-chip energy storage and power delivery, using an atomic-scale approach to modify electrostatic capacitors.

ORNL and other researchers observed a “surprising isotope effect in the optoelectronic properties of a single layer of molybdenum disulfide” when they substituted heavier isotope of molybdenum in the crystal.

Three U.S. national labs are partnering with NVIDIA to develop advanced memory technologies for high performance computing.

In-Depth

In addition to this week’s Automotive, Security and Pervasive Computing newsletter, here are more top stories and tech talk from the week:

Events

Find upcoming chip industry events here, including:

Event Date Location
ASMC: Advanced Semiconductor Manufacturing Conference May 13 – 16 Albany, NY
ISES Taiwan 2024: International Semiconductor Executive Summit May 14 – 15 New Taipei City
Ansys Simulation World 2024 May 14 – 16 Online
Women In Semiconductors May 16 Albany, NY
European Test Symposium May 20 – 24 The Hague, Netherlands
NI Connect Austin 2024 May 20 – 22 Austin, Texas
ITF World 2024 (imec) May 21 – 22 Antwerp, Belgium
Embedded Vision Summit May 21 – 23 Santa Clara, CA
ASIP Virtual Seminar 2024 May 22 Online
Electronic Components and Technology Conference (ECTC) 2024 May 28 – 31 Denver, Colorado
Hardwear.io Security Trainings and Conference USA 2024 May 28 – Jun 1 Santa Clara, CA
Find All Upcoming Events Here

Upcoming webinars are here.

Further Reading

Read the latest special reports and top stories, or check out the latest newsletters:

Automotive, Security and Pervasive Computing
Systems and Design
Low Power-High Performance
Test, Measurement and Analytics
Manufacturing, Packaging and Materials

The post Chip Industry Week In Review appeared first on Semiconductor Engineering.

Chip Industry Week In Review

By Adam Kovac, Karen Heyman, and Liz Allan.

India approved the construction of two fabs and a packaging house, for a total investment of about $15.2 billion, according to multiple sources. One fab will be jointly owned by Tata and Taiwan’s Powerchip. The second fab will be a joint investment between CG Power, Japan’s Renesas Electronics, and Thailand’s Stars Microelectronics. Tata will run the packaging facility, as well. India expects these efforts will add 20,000 advanced technology jobs and 60,000 indirect jobs, according to the Times of India. The country has been talking about building a fab for at least the past couple of decades, but funding never materialized.

The U.S. Department of Commerce (DoC) issued a CHIPS Act-based Notice of Funding Opportunity for R&D to establish and accelerate domestic capacity for advanced packaging substrates and substrate materials. The U.S. Secretary of Commerce said the government is prioritizing CHIPS Act funding for projects that will be operational by 2030 and anticipates America will produce 20% of the world’s leading-edge logic chips by the end of the decade.

The top three foundries plan to implement backside power delivery as soon as the 2nm node, setting the stage for faster and more efficient switching in chips, reduced routing congestion, and lower noise across multiple metal layers. But this novel approach to optimizing logic performance depends on advances in lithography, etching, polishing, and bonding processes.

Intel spun out Altera as a standalone FPGA company, the culmination of a rebranding and reorganization of its former Programmable Solutions Group. The move follows Intel’s decision to keep Intel Foundry at arm’s length, with a clean line between the foundry and the company’s processor business.

Multiple new hardware micro-architecture vulnerabilities were published in the latest Common Weakness Enumeration release this week, all related to transient execution (CWE 1420-1423).

The U.S. Office of the National Cyber Director (ONCD) published a technical report calling for the adoption of memory safe programming languages, aiming to reduce the attack surface in cyberspace and anticipate systemic security risk with better diagnostics. The DoC also is seeking information ahead of an inquiry into Chinese-made connected vehicles “to understand the extent of the technology in these cars that can capture wide swaths of data or remotely disable or manipulate connected vehicles.”

Quick links to more news:

Design and Power
Manufacturing and Test
Automotive
Security
Pervasive Computing and AI
Events

Design and Power

Micron began mass production of a new high-bandwidth chip for AI. The company said the HBM3E will be a key component in NVIDIA’s H2000 Tensor Core GPUs, set to begin shipping in the second quarter of 2024. HBM is a key component of 2.5D advanced packages.

Samsung developed a 36GB HBM3E 12H DRAM, saying it sets new records for bandwidth. The company achieved this by using advanced thermal compression non-conductive film, which allowed it to cram 12 layers into the area normally taken up by 8. This is a novel way of increasing DRAM density.

Keysight introduced QuantumPro, a design and simulation tool, plus workflow, for quantum computers. It combines five functionalities into the Advanced Design System (ADS) 2024 platform. Keysight also introduced its AI Data Center Test Platform, which includes pre-packaged benchmarking apps and dataset analysis tools.

Synopsys announced a 1.6T Ethernet IP solution, including 1.6T MAC and PCS Ethernet controllers, 224G Ethernet PHY IP, and verification IP.

Tenstorrent, Japan’s Leading-Edge Semiconductor Technology Center (LSTC) , and Rapidus are co-designing AI chips. LSTC will use Tenstorrent’s RISC-V and Chiplet IP for its forthcoming edge 2nm AI accelerator.

This week’s Systems and Design newsletter features these top stories:

  • 2.5D Integration: Big Chip Or Small PCB: Defining whether a 5D device is a PCB shrunk to fit into a package or a chip that extends beyond the limits of a single die can have significant design consequences.
  • Commercial Chiplets: Challenges of establishing a commercial chiplet.
  • Accellera Preps New Standard For Clock-Domain Crossing: New standard aims to streamline the clock-domain crossing flow.
  • Thinking Big: From Chips To Systems: Aart de Geus discusses the shift from chips to systems, next-generation transistors, and what’s required to build multi-die devices.
  • Integration challenges for RISC-V: Modifying the source code allows for democratization of design, but it adds some hurdles for design teams (video).

Demand for high-end AI servers is driven by four American companies, which will account for 60% of global demand in 2024, according to Trendforce. NVIDIA is projected to continue leading the market, with AMD closing the gap due its lower cost model.

The EU consortium PREVAIL is accepting design proposals as it seeks to develop next-gen edge-AI technologies. Anchors include CEA-Leti, Fraunhofer-Gesellschaft, imec, and VTT, which will use their 300mm fabrication, design, and test facilities to validate prototypes.

Siemens joined an initiative to expand educational opportunities in the semiconductor space around the world. The Semiconductor Education Alliance was launched by Arm in 2023 and focuses on helping teach skills in IC design and EDA.

Q-CTRL announced partnerships with six firms that it says will expand access to its performance-management software and quantum technologies. Wolfram, Aqarios, and qBraid will integrate Q-CTRL’s Fire Opal technology into their products, while Qblox, Keysight, and Quantware will utilize Q-CTRL’s Boulder Opal hardware system.

NTT, Red Hat, NVIDIA, and Fujitsu teamed up to provide data pipeline acceleration and contain orchestration technologies targeted at real-time AI analysis of massive data sets at the edge.

Manufacturing and Test

The U.S. Department of Energy (DOE)’s Office of Electricity launched the American-Made Silicon Carbide (SiC)  Packaging Prize. This $2.25 million contest invites competitors to propose, design, build, and test state-of-the-art SiC semiconductor packaging prototypes.

Applied Materials introduced products and solutions for patterning issues in the “angstrom era,” including line edge roughness, tip-to-tip spacing limitations, bridge defects, and edge placement errors.

imec reported progress made in EUV processes, masks and metrology in preparation for high-NA EUV. It also identified advanced node lithography and etch related processes that contribute the most to direct emissions of CO2, along with proposed solutions.

proteanTecs will participate in the Arm Total Design ecosystem, which now includes more than 20 companies united around a charter to accelerate and simplify the development of custom SoCs based on Arm Neoverse compute subsystems.

NikkeiAsia took an in-depth look at Japan’s semiconductor ecosystem and concluded it is ripe for revival with investments from TSMC, Samsung, and Micron, among others. TrendForce came to a similar conclusion, pointing to the fast pace of Japan’s resurgence, including the opening of TSMC’s fab.

FormFactor closed its sale of its Suzhou and Shanghai companies to Grand Junction Semiconductor for $25M in cash.

The eBeam Initiative celebrated its 15th anniversary and welcomed a new member, FUJIFILM. The group also uncorked its fourth survey of its members technology using deep learning in the photomask-to-wafer manufacturing flow.

Automotive

Apple shuttered its electric car project after 10 years of development. The chaotic effort cost the company billions of dollars, according to The New York Times.

Infineon released new automotive programmable SoCs with fifth-gen human machine interface (HMI) technology, offering improved sensitivity in three packages. The MCU offers up to 84 GPIOs and 384 KB of flash memory. The company also released automotive and industrial-grade 750V G1 discrete SiC MOSFETs aimed at applications such as EV charging, onboard chargers, DC-DC converters, energy, solid state circuit breakers, and data centers.

Cadence expanded its Tensilica IP portfolio to boost computation for automotive sensor fusion applications. Vision, radar, lidar, and AI processing are combined in a single DSP for multi-modal, sensor-based system designs.

Ansys will continue translating fast computing into fast cars, as the company’s partnership with Oracle Red Bull Racing was renewed. The Formula 1 team uses Ansys technology to improve car aerodynamics and ensure the safety of its vehicles.

Lazer Sport adopted Siemens’ Xcelerator portfolio to connect 3D design with 3D printing for prototyping and digital simulation of its sustainable KinetiCore cycling helmet.

The chair of the U.S. Federal Communications Commission (FCC) suggested automakers that sell internet-connected cars should be subject to a telecommunications law aiming to protect domestic violence survivors, reports CNBC. This is due to emerging cases of stalking through vehicle location tracking technology and remote control of functions like locking doors or honking the horn.

BYD‘s CEO said the company does not plan to enter the U.S. market because it is complicated and electrification has slowed down, reports Yahoo Finance. Meanwhile, the first shipment of BYD vehicles arrived in Europe, according to DW News.

Ascent Solar Technologiessolar module products will fly on NASA’s upcoming Lightweight Integrated Solar Array and AnTenna (LISA-T) mission.

Security

Researchers at Texas A&M University and the University of Delaware proposed the first red-team attack on graph neural network (GNN)-based techniques in hardware security.

A panel of four experts discuss mounting concerns over quantum security, auto architectures, and supply chain resiliency.

Synopsys released its ninth annual Open Source Security and Risk Analysis report, finding that 74% of code bases contained high-risk open-source vulnerabilities, up 54% since last year.

President Biden issued an executive order to prevent the large-scale transfer of Americans’ personal data to countries of concern. Types of data include genomic, biometric, personal health, geolocation, financial, and other personally identifiable information, which bad actors can use to track and scam Americans.

The National Institute of Standards and Technology (NIST) released Cybersecurity Framework (CSF) 2.0 to provide a comprehensive view for managing cybersecurity risk.

The EU Agency for Cybersecurity (ENISA) published a study on best practices for cyber crisis management, saying the geopolitical situation continues to impact the cyber threat landscape and planning for threats and incidents is vital for crisis management.

The U.S. Department of Energy (DOE) announced $45 million to protect the energy sector from cyberattacks.

The National Security Agency (NSA), the Federal Bureau of Investigation (FBI), and others published an advisory on Russian cyber actors using compromised routers.  Also the Cybersecurity and Infrastructure Security Agency (CISA), the UK National Cyber Security Centre (NCSC), and partners advised of tactics used by Russian Foreign Intelligence Service cyber actors to gain initial access into a cloud environment.

CISA, the FBI, and the Department of Health and Human Services (HHS) updated an advisory concerning the ALPHV Blackcat ransomware as a service (RaaS), which primarily targets the healthcare sector.

CISA also published a guide to support university cybersecurity clinics and issued other alerts.

Pervasive Computing and AI

Renesas expanded its RZ family of MPUs with a single-chip AI accelerator that offers 10 TOPS per watt power efficiency and delivers AI inference performance of up to 80 TOPS without a cooling fan. The chip is aimed at next-gen robotics with vision AI and real-time control.

Infineon launched dual-phase power modules to help data centers meet the power demands of AI GPU platforms. The company also released a family of solid-state isolators to deliver faster switching with up to 70% lower power dissipation.

Fig. 1: Infineon’s dual phase power modules: Source: Infineon

Amber Semiconductor announced a reference design for brushless motor applications using its AC to DC conversion semiconductor system to power ST‘s STM32 MCUs.

Micron released its universal flash storage (UFS) 4.0 package at just 9×13 mm, built on 232-layer 3D NAND and offering up to 1 terabyte capacity to enable next-gen phone designs and larger batteries.

LG and Meta teamed up to develop extended reality (XR) products, content, services, and platforms within the virtual space.

Microsoft and Mistral AI partnered to accelerate AI innovation and to develop and deploy Mistral’s next-gen large language models (LLMs).

Microsoft’s vice chair and president announced the company’s AI access principles, governing how it will operate AI datacenter infrastructure and other AI assets around the world.

Singtel and VMware partnered to enable enterprises to manage their connectivity and cloud infrastructure through the Singtel Paragon platform for 5G and edge cloud.

Keysight was selected as the Test Partner for the Deutsche Telekom Satellite NB-IoT Early Adopter Program, providing an end-to-end NB-IoT NTN testbed that allows designers and developers to validate reference designs for solutions using 3GPP Release 17 (Rel-17) NTN standards.

Global server shipments are predicted to increase by 2.05% in 2024, with AI servers accounting for about 12%, reports TrendForce. Also, the smartphone camera lens market is expected to rebound in 2024 with 3.8% growth driven by AI-smartphones, to reach about 4.22 billion units, reports TrendForce.

Yole released a smartphone camera comparison report with a focus on iPhone evolution and analysis of the structure, design, and teardown of each camera module, along with the CIS dimensions, technology node, and manufacturing processes.

Counterpoint released a number of 2023 reports on smartphone shipments by country and operator migrations to 5G.

Events

Find upcoming chip industry events here, including:

Event Date Location
International Symposium on FPGAs Mar 3 – 5 Monterey, CA
DVCON: Design & Verification Mar 4 – 7 San Jose, CA
ISES Japan 2024: International Semiconductor Executive Summit Mar 5 – 6 Tokyo, Japan
ISS Industry Strategy Symposium Europe Mar 6 – 8 Vienna, Austria
GSA International Semiconductor Conference Mar 13 – 14 London
Device Packaging Conference (DPC 2024) Mar 18 – 21 Fountain Hills, AZ
GOMACTech Mar 18 – 21 Charleston, South Carolina
SNUG Silicon Valley Mar 20 – 21 Santa Clara, CA
All Upcoming Events

Upcoming webinars are here, including topics such as digital twins, power challenges in data centers, and designing for 112G interface compliance.

Further Reading and Newsletters

Read the latest special reports and top stories, or check out the latest newsletters:

Systems and Design
Low Power-High Performance
Test, Measurement and Analytics
Manufacturing, Packaging and Materials
Automotive, Security and Pervasive Computing

The post Chip Industry Week In Review appeared first on Semiconductor Engineering.

❌