FreshRSS

Zobrazení pro čtení

Jsou dostupné nové články, klikněte pro obnovení stránky.

SRAM Security Concerns Grow

SRAM security concerns are intensifying as a combination of new and existing techniques allow hackers to tap into data for longer periods of time after a device is powered down.

This is particularly alarming as the leading edge of design shifts from planar SoCs to heterogeneous systems in package, such as those used in AI or edge processing, where chiplets frequently have their own memory hierarchy. Until now, most cybersecurity concerns involving volatile memory have focused on DRAM, because it is often external and easier to attack. SRAM, in contrast, does not contain a component as obviously vulnerable as a heat-sensitive capacitor, and in the past it has been harder to pinpoint. But as SoCs are disaggregated and more features are added into devices, SRAM is becoming a much bigger security concern.

The attack scheme is well understood. Known as cold boot, it was first identified in 2008, and is essentially a variant of a side-channel attack. In a cold boot approach, an attacker dumps data from internal SRAM to an external device, and then restarts the system from the external device with some code modification. “Cold boot is primarily targeted at SRAM, with the two primary defenses being isolation and in-memory encryption,” said Vijay Seshadri, distinguished engineer at Cycuity.

Compared with network-based attacks, such as DRAM’s rowhammer, cold boot is relatively simple. It relies on physical proximity and a can of compressed air.

The vulnerability was first described by Edward Felton, director of Princeton University’s Center for Information Technology Policy, J. Alex Halderman, currently director of the Center for Computer Security & Society at the University of Michigan, and colleagues. The breakthrough in their research was based on the growing realization in the engineering research community that data does not vanish from memory the moment a device is turned off, which until then was a common assumption. Instead, data in both DRAM and SRAM has a brief “remanence.”[1]

Using a cold boot approach, data can be retrieved, especially if an attacker sprays the chip with compressed air, cooling it enough to slow the degradation of the data. As the researchers described their approach, “We obtained surface temperatures of approximately −50°C with a simple cooling technique — discharging inverted cans of ‘canned air’ duster spray directly onto the chips. At these temperatures, we typically found that fewer than 1% of bits decayed even after 10 minutes without power.”

Unfortunately, despite nearly 20 years of security research since the publication of the Halderman paper, the authors’ warning still holds true. “Though we discuss several strategies for mitigating these risks, we know of no simple remedy that would eliminate them.”

However unrealistic, there is one simple and obvious remedy to cold boot — never leave a device unattended. But given human behavior, it’s safer to assume that every device is vulnerable, from smart watches to servers, as well as automotive chips used for increasingly autonomous driving.

While the original research exclusively examined DRAM, within the last six years cold boot has proven to be one of the most serious vulnerabilities for SRAM. In 2018, researchers at Germany’s Technische Universität Darmstadt published a paper describing a cold boot attack method that is highly resistant to memory erasure techniques, and which can be used to manipulate the cryptographic keys produced by the SRAM physical unclonable function (PUF).

As with so many security issues, it’s been a cat-and-mouse game between remedies and counter-attacks. And because cold boot takes advantage of slowing down memory degradation, in 2022 Yang-Kyu Choi and colleagues at the Korea Advanced Institute of Science and Technology (KAIST), described a way to undo the slowdown with an ultra-fast data sanitization method that worked within 5 ns, using back bias to control the device parameters of CMOS.

Fig. 1: Asymmetric forward back-biasing scheme for permanent erasing. (a) All the data are reset to 1. (b) All the data are reset to 0. Whether all the data where reset to 1 or 0 is determined by the asymmetric forward back-biasing scheme. Source: KAIST/Creative Commons [2]

Fig. 1: Asymmetric forward back-biasing scheme for permanent erasing. (a) All the data are reset to 1. (b) All the data are reset to 0. Whether all the data where reset to 1 or 0 is determined by the asymmetric forward back-biasing scheme. Source: KAIST/Creative Commons [2]

Their paper, as well as others, have inspired new approaches to combating cold boot attacks.

“To mitigate the risk of unauthorized access from unknown devices, main devices, or servers, check the authenticated code and unique identity of each accessing device,” said Jongsin Yun, memory technologist at Siemens EDA. “SRAM PUF is one of the ways to securely identify each device. SRAM is made of two inverters cross-coupled to each other. Although each inverter is designed to be the same device, normally one part of the inverter has a somewhat stronger NMOS than the other due to inherent random dopant fluctuation. During the initial power-on process, SRAM data will be either data 1 or 0, depending on which side has a stronger device. In other words, the initial data state of the SRAM array at the power on is decided by this unique random process variation and most of the bits maintain this property for life. One can use this unique pattern as a fingerprint of a device. The SRAM PUF data is reconstructed with other coded data to form a cryptographic key. SRAM PUF is a great way to anchor its secure data into hardware. Hackers may use a DFT circuit to access the memory. To avoid insecurely reading the SRAM information through DFT, the security-critical design makes DFT force delete the data as an initial process of TEST mode.”

However, there can be instances where data may be required to be kept in a non-volatile memory (NVM). “Data is considered insecure if the NVM is located outside of the device,” said Yun. “Therefore, secured data needs to be stored within the device with write protection. One-time programmable (OTP) memory or fuses are good storage options to prevent malicious attackers from tampering with the modified information. OTP memory and fuses are used to store cryptographic keys, authentication information, and other critical settings for operation within the device. It is useful for anti-rollback, which prevents hackers from exploiting old vulnerabilities that have been fixed in newer versions.”

Chiplet vulnerabilities
Chiplets also could present another vector for attack, due to their complexity and interconnections. “A chiplet has memory, so it’s going to be attacked,” said Cycuity’s Seshadri. “Chiplets, in general, are going to exacerbate the problem, rather than keeping it status quo, because you’re going to have one chiplet talking to another. Could an attack on one chiplet have a side effect on another? There need to be standards to address this. In fact, they’re coming into play already. A chiplet provider has to say, ‘Here’s what I’ve done for security. Here’s what needs to be done when interfacing with another chiplet.”

Yun notes there is a further physical vulnerability for those working with chiplets and SiPs. “When multiple chiplets are connected to form a SiP, we have to trust data coming from an external chip, which creates further complications. Verification of the chiplet’s authenticity becomes very important for SiPs, as there is a risk of malicious counterfeit chiplets being connected to the package for hacking purposes. Detection of such counterfeit chiplets is imperative.”

These precautions also apply when working with DRAM. In all situations, Seshardi said, thinking about security has to go beyond device-level protection. “The onus of protecting DRAM is not just on the DRAM designer or the memory designer,” he said. “It has to be secured by design principles when you are developing. In addition, you have to look at this holistically and do it at a system level. You must consider all the other things that communicate with DRAM or that are placed near DRAM. You must look at a holistic solution, all the way from software down to things like the memory controller and then finally, the DRAM itself.”

Encryption as a backup
Data itself always must be encrypted as second layer of protection against known and novel attacks, so an organization’s assets will still be protected even if someone breaks in via cold boot or another method.

“The first and primary method of preventing a cold boot attack is limiting physical access to the systems, or physically modifying the systems case or hardware preventing an attacker’s access,” said Jim Montgomery, market development director, semiconductor at TXOne Networks. “The most effective programmatic defense against an attack is to ensure encryption of memory using either a hardware- or software-based approach. Utilizing memory encryption will ensure that regardless of trying to dump the memory, or physically removing the memory, the encryption keys will remain secure.”

Montgomery also points out that TXOne is working with the Semiconductor Manufacturing Cybersecurity Consortium (SMCC) to develop common criteria based upon SEMI E187 and E188 standards to assist DM’s and OEM’s to implement secure procedures for systems security and integrity, including controlling the physical environment.

What kind and how much encryption will depend on use cases, said Jun Kawaguchi, global marketing executive for Winbond. “Encryption strength for a traffic signal controller is going to be different from encryption for nuclear plants or medical devices, critical applications where you need much higher levels,” he said. “There are different strengths and costs to it.”

Another problem, in the post-quantum era, is that encryption itself may be vulnerable. To defend against those possibilities, researchers are developing post-quantum encryption schemes. One way to stay a step ahead is homomorphic encryption [HE], which will find a role in data sharing, since computations can be performed on encrypted data without first having to decrypt it.

Homomorphic encryption could be in widespread use as soon as the next few years, according to Ronen Levy, senior manager for IBM’s Cloud Security & Privacy Technologies Department, and Omri Soceanu, AI Security Group manager at IBM.  However, there are still challenges to be overcome.

“There are three main inhibitors for widespread adoption of homomorphic encryption — performance, consumability, and standardization,” according to Levy. “The main inhibitor, by far, is performance. Homomorphic encryption comes with some latency and storage overheads. FHE hardware acceleration will be critical to solving these issues, as well as algorithmic and cryptographic solutions, but without the necessary expertise it can be quite challenging.”

An additional issue is that most consumers of HE technology, such as data scientists and application developers, do not possess deep cryptographic skills, HE solutions that are designed for cryptographers can be impractical. A few HE solutions require algorithmic and cryptographic expertise that inhibit adoption by those who lack these skills.

Finally, there is a lack of standardization. “Homomorphic encryption is in the process of being standardized,” said Soceanu. “But until it is fully standardized, large organizations may be hesitant to adopt a cryptographic solution that has not been approved by standardization bodies.”

Once these issues are resolved, they predicted widespread use as soon as the next few years. “Performance is already practical for a variety of use cases, and as hardware solutions for homomorphic encryption become a reality, more use cases would become practical,” said Levy. “Consumability is addressed by creating more solutions, making it easier and hopefully as frictionless as possible to move analytics to homomorphic encryption. Additionally, standardization efforts are already in progress.”

A new attack and an old problem
Unfortunately, security never will be as simple as making users more aware of their surroundings. Otherwise, cold boot could be completely eliminated as a threat. Instead, it’s essential to keep up with conference talks and the published literature, as graduate students keep probing SRAM for vulnerabilities, hopefully one step ahead of genuine attackers.

For example, SRAM-related cold boot attacks originally targeted discrete SRAM. The reason is that it’s far more complicated to attack on-chip SRAM, which is isolated from external probing and has minimal intrinsic capacitance. However, in 2022, Jubayer Mahmod, then a graduate student at Virginia Tech and his advisor, associate professor Matthew Hicks, demonstrated what they dubbed “Volt Boot,” a new method that could penetrate on-chip SRAM. According to their paper, “Volt Boot leverages asymmetrical power states (e.g., on vs. off) to force SRAM state retention across power cycles, eliminating the need for traditional cold boot attack enablers, such as low-temperature or intrinsic data retention time…Unlike other forms of SRAM data retention attacks, Volt Boot retrieves data with 100% accuracy — without any complex post-processing.”

Conclusion
While scientists and engineers continue to identify vulnerabilities and develop security solutions, decisions about how much security to include in a design is an economic one. Cost vs. risk is a complex formula that depends on the end application, the impact of a breach, and the likelihood that an attack will occur.

“It’s like insurance,” said Kawaguchi. “Security engineers and people like us who are trying to promote security solutions get frustrated because, similar to insurance pitches, people respond with skepticism. ‘Why would I need it? That problem has never happened before.’ Engineers have a hard time convincing their managers to spend that extra dollar on the costs because of this ‘it-never-happened-before’ attitude. In the end, there are compromises. Yet ultimately, it’s going to cost manufacturers a lot of money when suddenly there’s a deluge of demands to fix this situation right away.”

References

  1. S. Skorobogatov, “Low temperature data remanence in static RAM”, Technical report UCAM-CL-TR-536, University of Cambridge Computer Laboratory, June 2002.
  2. Han, SJ., Han, JK., Yun, GJ. et al. Ultra-fast data sanitization of SRAM by back-biasing to resist a cold boot attack. Sci Rep 12, 35 (2022). https://doi.org/10.1038/s41598-021-03994-2

The post SRAM Security Concerns Grow appeared first on Semiconductor Engineering.

SRAM Security Concerns Grow

SRAM security concerns are intensifying as a combination of new and existing techniques allow hackers to tap into data for longer periods of time after a device is powered down.

This is particularly alarming as the leading edge of design shifts from planar SoCs to heterogeneous systems in package, such as those used in AI or edge processing, where chiplets frequently have their own memory hierarchy. Until now, most cybersecurity concerns involving volatile memory have focused on DRAM, because it is often external and easier to attack. SRAM, in contrast, does not contain a component as obviously vulnerable as a heat-sensitive capacitor, and in the past it has been harder to pinpoint. But as SoCs are disaggregated and more features are added into devices, SRAM is becoming a much bigger security concern.

The attack scheme is well understood. Known as cold boot, it was first identified in 2008, and is essentially a variant of a side-channel attack. In a cold boot approach, an attacker dumps data from internal SRAM to an external device, and then restarts the system from the external device with some code modification. “Cold boot is primarily targeted at SRAM, with the two primary defenses being isolation and in-memory encryption,” said Vijay Seshadri, distinguished engineer at Cycuity.

Compared with network-based attacks, such as DRAM’s rowhammer, cold boot is relatively simple. It relies on physical proximity and a can of compressed air.

The vulnerability was first described by Edward Felton, director of Princeton University’s Center for Information Technology Policy, J. Alex Halderman, currently director of the Center for Computer Security & Society at the University of Michigan, and colleagues. The breakthrough in their research was based on the growing realization in the engineering research community that data does not vanish from memory the moment a device is turned off, which until then was a common assumption. Instead, data in both DRAM and SRAM has a brief “remanence.”[1]

Using a cold boot approach, data can be retrieved, especially if an attacker sprays the chip with compressed air, cooling it enough to slow the degradation of the data. As the researchers described their approach, “We obtained surface temperatures of approximately −50°C with a simple cooling technique — discharging inverted cans of ‘canned air’ duster spray directly onto the chips. At these temperatures, we typically found that fewer than 1% of bits decayed even after 10 minutes without power.”

Unfortunately, despite nearly 20 years of security research since the publication of the Halderman paper, the authors’ warning still holds true. “Though we discuss several strategies for mitigating these risks, we know of no simple remedy that would eliminate them.”

However unrealistic, there is one simple and obvious remedy to cold boot — never leave a device unattended. But given human behavior, it’s safer to assume that every device is vulnerable, from smart watches to servers, as well as automotive chips used for increasingly autonomous driving.

While the original research exclusively examined DRAM, within the last six years cold boot has proven to be one of the most serious vulnerabilities for SRAM. In 2018, researchers at Germany’s Technische Universität Darmstadt published a paper describing a cold boot attack method that is highly resistant to memory erasure techniques, and which can be used to manipulate the cryptographic keys produced by the SRAM physical unclonable function (PUF).

As with so many security issues, it’s been a cat-and-mouse game between remedies and counter-attacks. And because cold boot takes advantage of slowing down memory degradation, in 2022 Yang-Kyu Choi and colleagues at the Korea Advanced Institute of Science and Technology (KAIST), described a way to undo the slowdown with an ultra-fast data sanitization method that worked within 5 ns, using back bias to control the device parameters of CMOS.

Fig. 1: Asymmetric forward back-biasing scheme for permanent erasing. (a) All the data are reset to 1. (b) All the data are reset to 0. Whether all the data where reset to 1 or 0 is determined by the asymmetric forward back-biasing scheme. Source: KAIST/Creative Commons [2]

Fig. 1: Asymmetric forward back-biasing scheme for permanent erasing. (a) All the data are reset to 1. (b) All the data are reset to 0. Whether all the data where reset to 1 or 0 is determined by the asymmetric forward back-biasing scheme. Source: KAIST/Creative Commons [2]

Their paper, as well as others, have inspired new approaches to combating cold boot attacks.

“To mitigate the risk of unauthorized access from unknown devices, main devices, or servers, check the authenticated code and unique identity of each accessing device,” said Jongsin Yun, memory technologist at Siemens EDA. “SRAM PUF is one of the ways to securely identify each device. SRAM is made of two inverters cross-coupled to each other. Although each inverter is designed to be the same device, normally one part of the inverter has a somewhat stronger NMOS than the other due to inherent random dopant fluctuation. During the initial power-on process, SRAM data will be either data 1 or 0, depending on which side has a stronger device. In other words, the initial data state of the SRAM array at the power on is decided by this unique random process variation and most of the bits maintain this property for life. One can use this unique pattern as a fingerprint of a device. The SRAM PUF data is reconstructed with other coded data to form a cryptographic key. SRAM PUF is a great way to anchor its secure data into hardware. Hackers may use a DFT circuit to access the memory. To avoid insecurely reading the SRAM information through DFT, the security-critical design makes DFT force delete the data as an initial process of TEST mode.”

However, there can be instances where data may be required to be kept in a non-volatile memory (NVM). “Data is considered insecure if the NVM is located outside of the device,” said Yun. “Therefore, secured data needs to be stored within the device with write protection. One-time programmable (OTP) memory or fuses are good storage options to prevent malicious attackers from tampering with the modified information. OTP memory and fuses are used to store cryptographic keys, authentication information, and other critical settings for operation within the device. It is useful for anti-rollback, which prevents hackers from exploiting old vulnerabilities that have been fixed in newer versions.”

Chiplet vulnerabilities
Chiplets also could present another vector for attack, due to their complexity and interconnections. “A chiplet has memory, so it’s going to be attacked,” said Cycuity’s Seshadri. “Chiplets, in general, are going to exacerbate the problem, rather than keeping it status quo, because you’re going to have one chiplet talking to another. Could an attack on one chiplet have a side effect on another? There need to be standards to address this. In fact, they’re coming into play already. A chiplet provider has to say, ‘Here’s what I’ve done for security. Here’s what needs to be done when interfacing with another chiplet.”

Yun notes there is a further physical vulnerability for those working with chiplets and SiPs. “When multiple chiplets are connected to form a SiP, we have to trust data coming from an external chip, which creates further complications. Verification of the chiplet’s authenticity becomes very important for SiPs, as there is a risk of malicious counterfeit chiplets being connected to the package for hacking purposes. Detection of such counterfeit chiplets is imperative.”

These precautions also apply when working with DRAM. In all situations, Seshardi said, thinking about security has to go beyond device-level protection. “The onus of protecting DRAM is not just on the DRAM designer or the memory designer,” he said. “It has to be secured by design principles when you are developing. In addition, you have to look at this holistically and do it at a system level. You must consider all the other things that communicate with DRAM or that are placed near DRAM. You must look at a holistic solution, all the way from software down to things like the memory controller and then finally, the DRAM itself.”

Encryption as a backup
Data itself always must be encrypted as second layer of protection against known and novel attacks, so an organization’s assets will still be protected even if someone breaks in via cold boot or another method.

“The first and primary method of preventing a cold boot attack is limiting physical access to the systems, or physically modifying the systems case or hardware preventing an attacker’s access,” said Jim Montgomery, market development director, semiconductor at TXOne Networks. “The most effective programmatic defense against an attack is to ensure encryption of memory using either a hardware- or software-based approach. Utilizing memory encryption will ensure that regardless of trying to dump the memory, or physically removing the memory, the encryption keys will remain secure.”

Montgomery also points out that TXOne is working with the Semiconductor Manufacturing Cybersecurity Consortium (SMCC) to develop common criteria based upon SEMI E187 and E188 standards to assist DM’s and OEM’s to implement secure procedures for systems security and integrity, including controlling the physical environment.

What kind and how much encryption will depend on use cases, said Jun Kawaguchi, global marketing executive for Winbond. “Encryption strength for a traffic signal controller is going to be different from encryption for nuclear plants or medical devices, critical applications where you need much higher levels,” he said. “There are different strengths and costs to it.”

Another problem, in the post-quantum era, is that encryption itself may be vulnerable. To defend against those possibilities, researchers are developing post-quantum encryption schemes. One way to stay a step ahead is homomorphic encryption [HE], which will find a role in data sharing, since computations can be performed on encrypted data without first having to decrypt it.

Homomorphic encryption could be in widespread use as soon as the next few years, according to Ronen Levy, senior manager for IBM’s Cloud Security & Privacy Technologies Department, and Omri Soceanu, AI Security Group manager at IBM.  However, there are still challenges to be overcome.

“There are three main inhibitors for widespread adoption of homomorphic encryption — performance, consumability, and standardization,” according to Levy. “The main inhibitor, by far, is performance. Homomorphic encryption comes with some latency and storage overheads. FHE hardware acceleration will be critical to solving these issues, as well as algorithmic and cryptographic solutions, but without the necessary expertise it can be quite challenging.”

An additional issue is that most consumers of HE technology, such as data scientists and application developers, do not possess deep cryptographic skills, HE solutions that are designed for cryptographers can be impractical. A few HE solutions require algorithmic and cryptographic expertise that inhibit adoption by those who lack these skills.

Finally, there is a lack of standardization. “Homomorphic encryption is in the process of being standardized,” said Soceanu. “But until it is fully standardized, large organizations may be hesitant to adopt a cryptographic solution that has not been approved by standardization bodies.”

Once these issues are resolved, they predicted widespread use as soon as the next few years. “Performance is already practical for a variety of use cases, and as hardware solutions for homomorphic encryption become a reality, more use cases would become practical,” said Levy. “Consumability is addressed by creating more solutions, making it easier and hopefully as frictionless as possible to move analytics to homomorphic encryption. Additionally, standardization efforts are already in progress.”

A new attack and an old problem
Unfortunately, security never will be as simple as making users more aware of their surroundings. Otherwise, cold boot could be completely eliminated as a threat. Instead, it’s essential to keep up with conference talks and the published literature, as graduate students keep probing SRAM for vulnerabilities, hopefully one step ahead of genuine attackers.

For example, SRAM-related cold boot attacks originally targeted discrete SRAM. The reason is that it’s far more complicated to attack on-chip SRAM, which is isolated from external probing and has minimal intrinsic capacitance. However, in 2022, Jubayer Mahmod, then a graduate student at Virginia Tech and his advisor, associate professor Matthew Hicks, demonstrated what they dubbed “Volt Boot,” a new method that could penetrate on-chip SRAM. According to their paper, “Volt Boot leverages asymmetrical power states (e.g., on vs. off) to force SRAM state retention across power cycles, eliminating the need for traditional cold boot attack enablers, such as low-temperature or intrinsic data retention time…Unlike other forms of SRAM data retention attacks, Volt Boot retrieves data with 100% accuracy — without any complex post-processing.”

Conclusion
While scientists and engineers continue to identify vulnerabilities and develop security solutions, decisions about how much security to include in a design is an economic one. Cost vs. risk is a complex formula that depends on the end application, the impact of a breach, and the likelihood that an attack will occur.

“It’s like insurance,” said Kawaguchi. “Security engineers and people like us who are trying to promote security solutions get frustrated because, similar to insurance pitches, people respond with skepticism. ‘Why would I need it? That problem has never happened before.’ Engineers have a hard time convincing their managers to spend that extra dollar on the costs because of this ‘it-never-happened-before’ attitude. In the end, there are compromises. Yet ultimately, it’s going to cost manufacturers a lot of money when suddenly there’s a deluge of demands to fix this situation right away.”

References

  1. S. Skorobogatov, “Low temperature data remanence in static RAM”, Technical report UCAM-CL-TR-536, University of Cambridge Computer Laboratory, June 2002.
  2. Han, SJ., Han, JK., Yun, GJ. et al. Ultra-fast data sanitization of SRAM by back-biasing to resist a cold boot attack. Sci Rep 12, 35 (2022). https://doi.org/10.1038/s41598-021-03994-2

The post SRAM Security Concerns Grow appeared first on Semiconductor Engineering.

Increased Automotive Data Use Raises Privacy, Security Concerns

Od: John Koon

The amount of data being collected, processed, and stored in vehicles is exploding, and so is the value of that data. That raises questions that are still not fully answered about how that data will be used, by whom, and how it will be secured.

Automakers are competing based on the latest versions of advanced technologies such as ADAS, 5G, and V2X, but the ECUs, software-defined vehicles, and in-cabin monitoring also demand more and more data, and they are using that data for purposes that extend beyond just getting the vehicle from point A to point B safely. They now are vying to offer additional subscription-based services according to customers’ interests, as various entities, including insurance companies, indicate a willingness to pay for information on drivers’ habits.

Collecting this data can help OEMs gain insights and potentially generate additional revenue. However, gathering it raises privacy and security concerns about who will own this massive amount of data and how it should be managed and used. And as automotive data use increases, how will it impact future automotive design?

Fig. 1: Connected vehicles rely on software to communicate between vehicles and the cloud. Source: McKinsey & Co.

Fig. 1: Connected vehicles rely on software to communicate between vehicles and the cloud. Source: McKinsey & Co.

“Much of the data generated in the vehicle will have immense value to OEMs and their partners for analyzing driver behavior and vehicle performance and for developing new or enhanced features,” said Sven Kopacz, autonomous vehicle section manager at Keysight Technologies. “On the other hand, the privacy of data use can be viewed as a risk to some. But the real value – as already implemented and used by Tesla and others – is the constant feedback to improve those ADAS algorithms, enable a CI/CD DevOps software development model, and allow the rapid download of updates. Only time will tell if law enforcement and the courts will demand this data and how lawmakers will respond.”

Types of data generated
According to Precedence Research, the global automotive data market size will grow from $2.19 billion in 2022 to $14.29 billion by 2032, with many types of data collected, including:

  • Autonomous driving: Data on all levels, from L1 to L5, including that collected from the multiple sensors installed on vehicles.
  • Infrastructure: Remote monitoring, OTA updates, and data used for remote control by control centers, V2X, and traffic patterns.
  • Infotainment: Information on how customers are using applications, such as voice control, gesture, maps, and parking.
  • Connected information: Information on payment to third-party parking apps, accident information, data from dashboard cameras, handheld devices, mobile applications, and driver behavior monitoring.
  • Vehicle health: Repair and maintenance records, insurance underwriting, fuel consumption, telematics.

This information may be useful for future automotive design, predictive maintenance, and safety improvements, and insurance companies are expected to be able to reduce underwriting costs with more comprehensive information on accidents. Based on the information collected, OEMs should be able to design more reliable and safer cars, and to stay in close touch with customer wants. For example, experiments can be conducted to gauge customer demand for subscription-based services such as automatic parking and more sophisticated voice input and commands.

“Diagnostic data for service and repair has been a core of automotive data analytics for decades,” noted Lorin Kennedy, senior staff product management manager for SLM in-field analytics at Synopsys. “With the advent of connected vehicles and advanced machine learning (ML) analytics, which enable a greater quantity of data to be routinely processed, this data has gained exponentially in value. As data drives feature enhancements such as mobile-like experiences and advanced driver assist capabilities, OEMs increasingly need to better understand the dependability and reliability of the semiconductor systems powering these new features. The collection of monitoring and sensor data from electronic components and the semiconductors themselves will be a growing diagnostic data requirement across all types of automotive technologies like ADAS, IVI, ECUs, etc. to ensure quality and reliability on these more advanced nodes.”

Anticipated updates to ISO 26262 regulations regarding the application of predictive maintenance to hardware, identifying degrading intermittent faults caused by silicon aging, and over-stress conditions in the field are areas to be addressed, as well. Those can include silicon lifecycle management (SLM) technologies, which can deliver more comprehensive knowledge about the health and remaining useful life of silicon as it ages.

“That knowledge, in turn, will enable service updates and future OTA releases that leverage additional semiconductor compute power,” Kennedy said. “Overall fleet performance will benefit, and the semiconductor and system design process will, too, as new insights help achieve greater efficiencies. OEM, Tier One, and semiconductor supplier collaboration on what the data brings to light – from silicon to software system performance – will enable vehicles to meet the functional safety design parameters that are becoming increasingly crucial in advanced electronics.”

Still, for data generated in vehicles, OEMs will need to prioritize which data can provide value for drivers immediately, and which data should be sent to the cloud via 5G connections.

“Tradeoffs between on-board processing to reduce data volume and data transmission network costs will likely dictate prioritization,” Keysight’s Kopacz said. “For example, camera, lidar, and radar sensor data for ADAS applications may have value for training ADAS algorithms, but the volume of raw data will be very costly to transmit and store. Likewise, driver attention data can have high value in UI design, and would be best gathered in a meta-data form. V2X data has a relatively lower data volume and should ultimately be a key data source for ADAS, providing in-car non-line-of-sight visibility of other vehicles, road infrastructure, and road conditions. Sharing this over V2N links can enable effective safety applications, but angle random walk (ARW) sensor data needs to be considered more carefully due to its complex nature. Infotainment streaming content into the vehicle also can be a valuable revenue stream for OEMs, and the content providers as well, as network operators working together.”

Impacts on automotive cybersecurity
As vehicles become more autonomous and connected, data use will increase, and so will the value of that data. This raises cybersecurity and data privacy concerns. Hackers want to steal personal data collected by the vehicles, and can use ransomware and other attacks to do so. The idea of taking control of vehicles — or worse, stealing them — also attracts hackers. Techniques used include hacking vehicle apps and wireless connections on the vehicles (diagnostics, key fob attacks and keyless jamming). Protecting data access, vehicles, and infrastructure from attacks is increasingly important and challenging.

Cybersecurity risks increase with software-defined vehicles. Memory especially will need to be safeguarded.

“The integration of advanced technology into EVs poses significant cybersecurity challenges that demand immediate attention and sophisticated solutions,” said Ilia Stolov, center head of secure memory solution at Winbond. “Central to the digital fortresses within modern electronic platforms are flash non-volatile memories, housing invaluable assets like code, private data, and company credentials. Unfortunately, their ubiquity has rendered them attractive targets for hackers seeking unauthorized access to sensitive information.”

Stolov noted that Winbond has been actively working to secure flash memory from hacks.

Additionally, there are important considerations in securing memory designs, such as:

  • DICE root of trust: The Device Identifier Composition Engine (DICE) should be used to create the secure flash root of trust for hardware security. This secure identity forms the basis for building trust in the hardware. Other security measures can therefore rely on the authenticity and integrity of the boot code, protecting against firmware and software attacks. The initial boot process and subsequent software execution are based on trusted and verified measurements, helping prevent the injection of malicious code into the system.
  • Code and data protection: Protecting code and data is crucial for maintaining system-wide integrity. Unauthorized modifications to code or data can lead to malfunctions, system instability, or the introduction of malicious code, compromising the hardware’s intended functionality or exploiting system vulnerabilities.
  • Authentication protocols: Authentication is a fundamental and crucial component of cybersecurity, serving as the frontline defense against unauthorized access and potential security breaches. Employing authentication protocols to restrict access to authorized actors and approved software layers only using cryptography credentials is important.
  • Secure software updates with rollback protection: Regular updates extend beyond bug fixes including remote firmware over-the-air (OTA) updates, guards against rollback attacks, and ensures the execution of only legitimate updates.
  • Post-quantum cryptography: Anticipating the post-quantum computing era to include NIST 800-208 Leighton-Micali Signature (LMS) cryptography safeguards EVs against the potential threats posed by future quantum computers.
  • Platform resiliency: Automatic detection of unauthorized code changes enables swift recovery to a secure state, effectively thwarting potential cyber threats. Adhering to NIST 800-193 recommendations for platform resiliency ensures a robust defense mechanism.
  • Secure supply chain: Guaranteeing the origin and integrity of flash content throughout the supply chain, these secure flash devices prevent content tampering and misconfiguration during platform assembly, transportation, and configuration. This, in turn, safeguards against cyber adversaries.

Considering the transition to SDVs and connected cars, data vulnerability becomes even more significant.

“Depending on where data resides, different protection measures are in place,” said Keysight’s Kopacz. “Intrusion detection systems (IDS), crypto services, and key management are becoming standard solutions in vehicles. Especially sensitive data for safety features needs to be protected and verified. Thus, redundancy becomes more relevant. With SDVs, the vehicle software is constantly updated or changed throughout the entire vehicle life cycle. Ever-evolving cyber threats are particularly challenging. Accordingly, the entire vehicle software must be continuously checked for new security gaps. OEMs are going to need comprehensive testing solutions to minimize security threats. This will need to include the cybersecurity testing of the entire attack surface, covering all vehicle interfaces – wired vehicle communication networks such as CAN or automotive Ethernet or wireless connections via Wi-Fi, Bluetooth, or cellular communications. OEMs will also need to test the backend that provides over-the-air (OTA) software updates. Such solutions can reduce the risk of damage or data theft by cybercriminals.”

Data management and privacy concerns
Another issue to be resolved is how the massive amount of data collected will be managed and used. Ideally, data will be analyzed to yield commercial value without causing privacy concerns. For example, infotainment platform data might reveal what types of music are most popular, helping the music industry to improve marketing strategies. Who will monitor the transfer of such data, though? How will customers be made aware of the data collection? And will they have an opportunity to opt out of having their data sold?

As with airplanes, vehicle black boxes are installed to record information for analysis of the data after an accident occurs. The information recorded includes vehicle speed, the braking situation, and the activation of air bags, among other things. If an accident occurs resulting in a fatality, and the data from ADAS and ECU uncover vulnerability in the designs, could that data be used as evidence in court against manufacturers or their supply chains? Armed with this information, the insurance industry may decline claims. Would one or more manufacturers of the ADAS/ECU be required to hand over the data when ordered by the authorities?

“Quality requirements for sophisticated electronic parts will continue to become more rigid and strict, allowing only a few defective parts per billion (DPPB) due to the impact failed components can have on the safety and well-being of human life,” noted Guy Cortez, senior staff product management manager for SLM analytics at Synopsys. “SLM data analytics will continue to play a substantial role in the health, maintainability, and sustainability of these devices throughout their life within the vehicle. Through the power of analytics, you can do proper root cause analysis of any failed device (e.g., return merchandise authorization, or RMA). What’s more, you will also be able to find ‘like’ devices that ultimately may exhibit similar failed behavior over time. Thus empowered, you can proactively recall these like devices before they fail during operation in the field. Upon further analysis, the device(s) in question may require a design re-spin by the device developer in order to correct any identified issue. With a proper SLM solution deployed throughout the automotive ecosystem, you can achieve a higher level of predictability, and thus higher quality and safety for the automotive manufacturer and consumer.”

OEM impact
While modern cars have been described as computers on wheels, they are now more like mobile phones on wheels. OEMs are designing cars that do not skimp on features. Semi-autonomous driving, voice-controlled infotainment systems, and the monitoring of many functions—including driver behavior— are yielding a large amount of data. While that data can be used to improve future designs. OEMs’ approaches to security and privacy vary, with some offering stronger security and privacy protection than others.

Mercedes-Benz is paying attention to data security and privacy, and is compliant to UN ECE R155 / R156, a European norm for cybersecurity and software update management systems, according to the company. Which data is processed in connection with digital vehicle services depends on which services the customer selects. Only the data required for the respective service will be processed. Additionally, the “Mercedes me connect” app’s terms of use and privacy information make it transparent for customers to see what data is needed for and how it is processed. Customers can determine which services they want to use.

Hyundai indicated it would follow a user-centric focus, prioritizing safety, information security, and data privacy with fault-tolerant software architectures to enhance cybersecurity. Hyundai Motor Group’s global software center, 42dot, is currently developing integrated hardware/software security solutions that detect and block data tampering, hacking, and external cyber threats, as well as abnormal communication using big data and AI algorithms.

And according to the BMW Group, the company manages a connected fleet of more than 20 million vehicles globally. More than 6 million vehicles are updated over-the-air on a regular basis. Together with other services, more than 110 terabytes of data traffic per day are processed between the connected vehicles and cloud-backend. All BMW vehicle interfaces permit consumers to opt in or out of various types of data collection and processing that may happen on their vehicles. If preferred, BMW customers may opt out of all optional data collection relating to their vehicles at any time by visiting the BMW iDrive screen in their vehicle. Additionally, to completely stop the transfer of any data from BMW vehicles to BMW services, customers can contact the company to request that the embedded SIM on their vehicles be disabled.

Not all OEMs hold the same philosophy on privacy. According to a study on 25 brands conducted by the Mozilla Foundation, a nonprofit organization, 56% will share data with law enforcement in response to an informal request, 84% share or sell personal data, and 100% earned the foundation’s “privacy not included” warning label.

More importantly, are customers educated or informed on the privacy issue?

Fig. 2: Once data is collected from a vehicle, it can go to multiple destinations without the knowledge of customers. Source: Mozilla, *Privacy Not Included.

Fig. 2: Once data is collected from a vehicle, it can go to multiple destinations without the knowledge of customers. Source: Mozilla, *Privacy Not Included.

Applying data to automotive design in the future
OEMs collect many different types of automotive data in relation to autonomous driving, infrastructure, infotainment, connected vehicles, and vehicle health and maintenance. The ultimate goal, however, is not just to compile massive raw data; rather, it is to extract value from it. One of the questions OEMs need to ask is how to apply technology to extract information that is really useful in future automotive design.

“OEMs are trying to test and validate the various functions of their vehicles,” said David Fritz, vice president of virtual and hybrid systems at Siemens EDA. “This can involve millions of terabytes of data. Sometimes, a huge portion of the data is redundant and useless. The real value in the data is, once it gets distilled, that it’s in a form where humans can relate to the meaning of the data, and it also can be pushed into the systems while they’re being developed and tested and before the vehicles are even on the ground. We’ve known for quite some time that many countries and regulatory bodies around the world have been collecting what they call an accident database. When an accident occurs, the police show up on the scene collecting relevant data. ‘There was an intersection here, a stop sign there. And this car was traveling in this direction roughly this many miles an hour. The weather condition is this. The car entered the intersection in the yellow light and caused an accident, etc.’ This is an accident scenario. Technologies are available to take those scenarios and put them in a standard form called Open Scenario. Based on the information, a new set of data can be generated to determine what the sensors would be seeing in those accident situations, and then push it through both a virtual version of the vehicle and environment and in the future, and push those scenarios through the sensors in this physical vehicle itself. This is really the distillation of that data into a form that a human can wrap their mind around. Otherwise, you could collect billions of terabytes of raw data and try to push that into these systems, and it wouldn’t actually help you any more than if someone were sitting in a car and dragging those for billions of miles.”

But that data also can be very useful. “If an OEM wants to obtain safety certification, say in Germany, the OEM can provide a set of data of scenarios on how the vehicle will navigate,” Fritz said. “An OEM can provide a set of data to the German authority, with a set of scenarios to prove the vehicle will navigate in a safe manner under various conditions. By comparing that with the data in the accident database, the German government can say that as long as you avoid 95% of the accidents in that database, you’re certified. That’s actionable from the perspectives of human drivers, insurance, engineering, and visual simulation. The data prove the vehicle is going to behave as expected. The alternative is to drive around, as in the case of autonomous vehicles, and try to justify the accident was not caused by the vehicle, while facing the lawsuit. It does not seem to make sense, but that’s what’s happening today.”

Related Reading
Curbing Automotive Cybersecurity Attacks
A growing number of standards and regulations within the automotive ecosystem promises to save developments costs by fending off cyberattacks.
Software-Defined Vehicles Ready To Roll
New approach could have big effects on cost, safety, security, and time to market.

The post Increased Automotive Data Use Raises Privacy, Security Concerns appeared first on Semiconductor Engineering.

❌