FreshRSS

Zobrazení pro čtení

Jsou dostupné nové články, klikněte pro obnovení stránky.

Chip Industry Week In Review

Synopsys refocused its security priorities around chips, striking a deal to sell off its Software Integrity Group subsidiary to private equity firms Clearlake Capital Group and Francisco Partners for about $2.1 billion. That deal comes on the heels of Synopsys’ recent acquisition of Intrinsic ID, which develops physical unclonable function IP. Sassine Ghazi, Synopsys’ president and CEO, said in an interview that the sale of the software group “gives us the ability to have management bandwidth, capital, and to double down on what we’re doing in our core business.”

The U.S. Commerce Department reportedly pulled export licenses from Intel and Qualcomm that permitted them to ship semiconductors to Huawei, the Financial Times reported. The move comes after advanced chips from Intel reportedly were used in new laptops and smartphones from the China-based company. 

Apple debuted its second-generation 3nm M4 chip with the launch of the new iPad Pro. The CPU and GPU each have up to 10 cores, with a neural engine capable of 38 TOPS, and a total of 28 billion transistors. Apple also is working with TSMC to develop its own AI processors for running software in data centers, reports The Wall Street Journal.

The U.S. is expected to triple its semiconductor manufacturing capacity by 2032, according to a new report by the Semiconductor Industry Association and Boston Consulting. By that year, the U.S. is projected to have 28% of global capacity for advanced logic manufacturing and over a quarter of total global capital expenditures.

Fig. 1: Source: Semiconductor Industry Association and Boston Consulting Group.

Quick links to more news:

Global
Market Reports
Automotive
Security
Product News
Education and Training
Research
In-Depth
Events
Further Reading

Around The Globe

The U.S. Commerce Department plans to solicit bids from organizations interested in creating and managing a new CHIPS Manufacturing USA institute focused on digital twins in the semiconductor sector. The government will award up to $285 million to the selected proposal.

The U.S. National Science Foundation and Department of Energy announced the first 35 projects to be supported with computational time through the National Artificial Intelligence Research Resource (NAIRR) Pilot. The initial selected projects will gain access to several U.S. supercomputing centers and other resources, with the goal of advancing responsible AI research.

Through its new Federal AI Sandbox, MITRE is offering up its computing power to U.S. government agencies. “Our new Federal AI Sandbox will help level the playing field, making the high-quality compute power needed to train and test custom AI solutions available to any agency,” stated Charles Clancy, MITRE, senior vice president and chief technology officer, in the release.

Saudi Arabia’s $100 billion investment fund for semiconductor and AI technology pledged it would divest from China if requested by the U.S, reported Bloomberg.

Japan’s SoftBank is holding talks with UK-based AI Chip firm Graphcore about a possible acquisition, reports Bloomberg.

India’s chip industry is heating up. Mindgrove launched the country’s first SoC, named Secure IoT. The chip clocks at 700 MHz, and the company is touting its key security algorithms, secure boot, and on-chip OTP memory. Meanwhile, Lam Research is expanding its global semiconductor fabrication supply chain to include India.

Microsoft will build a $3.3 billion AI data center in Racine, Wisconsin, the same location as the failed Foxconn investment touted six years ago.

Markets And Money

The SIA announced first-quarter global semiconductor sales grew more than 15% YoY, still 5.7% below Q4 2023, but a big improvement over last year. Consider that the semiconductor materials market contracted 8.2% in 2023 to $66.7 billion, down from a record $72.7 billion in 2022, according to a new report from SEMI.

The demand for AI-powered consumer electronics will drive global AI chipset shipments to 1.3 billion by 2030, according to ABI Research.

TrendForce released several new industry reports this week. Among the highlights:

  • HBM prices are expected to increase by up to 10% in 2025, representing more than 30% of total DRAM value.
  • In Q2, DRAM contract prices rose 13% to 18%, while NAND flash prices increased 15% to 20%.
  • The top 10 design firms’ combined revenue increased 12% in 2023, with NVIDIA taking the lead for the first time.

A number of acquisitions were announced recently:

  • High-voltage IC company, Power Integrations, will purchase the assets of Odyssey Semiconductor Technologies, a developer of gallium nitride (GaN) transistors.
  • Mobix Labs agreed to buy RF design company RaGE Systems for $20 million in cash, stock, and incentives.
  • V-Tek, a packaging services and inspection company, acquired A&J Programming, a manufacturer of automated handling and programming equipment.

The global smartphone market grew 6% year-over-year, shipping 296.9 million units in Q124, according to a Counterpoint report.  Samsung toppled Apple for the top spot with a 20% share.

Automotive

U.S. Justice Department is investigating whether Tesla committed securities or wire fraud for misleading consumers and investors about its EV’s autopilot capabilities, according to Reuters.

The automotive ecosystem is undergoing a huge transformation toward software-defined vehicles, spurring new architectures that can be future-proofed and customized with software.

Infineon introduced a microcontroller for the automotive battery management sector, integrating high-precision analog and high-voltage subsystems on a single chip. Infineon also inked a deal with China’s Xiaomi to provide SiC power modules for Xiaomi’s new SU7 smart EV.

Keysight and ETAS are teaming up to embed ETAS fuzz testing software into Keysight’s automotive cybersecurity platform.

Also, Keysight’s device security research lab, Riscure Security Solutions, can now conduct vehicle type approval evaluations under United Nations R155/R156 regulations. Keysight acquired Riscure in March.

Two autonomous driving companies received big funding. British AI company Wayve received a $1.05 billion Series C investment from SoftBank, with contributions from NVIDIA and Microsoft. Hyundai spent an additional $475 million on Motional, according its recent earnings report.

The automotive imaging market grew to U.S. $5.7 billion in 2023 due to increased production, autonomy demand, and higher-resolution offerings.

Automotive Grade Linux (AGL), a collaborative cross-industry effort developing an open source platform for all Software-Defined Vehicles (SDVs), released cloud-native functionality, RISC-V architecture and flutter applications.

Security

SRAM security concerns are intensifying as a combination of new and existing techniques allow hackers to tap into data for longer periods of time after a device is powered down. This is particularly alarming as the leading edge of design shifts to heterogeneous systems in package, where chiplets frequently have their own memory hierarchy.

Machine learning is being used by hackers to find weaknesses in chips and systems, but it also is starting to be used to prevent breaches by pinpointing hardware and software design flaws.

txOne Networks, provider of Cyber-Physical Systems security, raised $51 million in Series B extension round of funding.

The U.S. Department of Justice charged a Russian national with his role as the creator, developer and administrator of the LockBit, a prolific ramsomware group, that allegedly stole $100 million in payments from 2,000 victims.

The Cybersecurity and Infrastructure Security Agency (CISA) launched “We Can Secure Our World,” a new public awareness program promoting “basic cyber hygiene” and the agency also issues a number of alerts/advisories.

Product News

Siemens unveiled its Solido IP Validation Suite software, an automated quality assurance product designed to work across all design IP types and formats. The suite includes Solido Crosscheck and IPdelta software, which both provide in-view, cross-view and version-to-version QA checks.

proteanTecs announced its lifecycle monitoring solution is being integrated into SAPEON’s new AI processors.

SpiNNcloud Systems revealed their SpiNNaker2 system, an event-based AI platform supercomputer containing chips that are a mesh of 152 ARM-based cores. The platform has the ability to emulate 10 billion neurons while still maintaining power efficiency and reliability.

Ansys partnered with Schrodinger to develop new computational materials. The collaboration will see Schrodinger’s molecular modeling technology used in Ansys’ simulation tools to evaluate performance ahead of the prototype phase.

Keysight introduced a pulse generator to its handheld radio frequency analyzer software options. The Option 357 pulse generator is downloadable on B- and C-Series FieldFox analyzers.

Education and Training

Semiconductor fever is hitting academia:

  • Penn State discussed its role in leading 15 universities to drive advances in chip integration and packaging.
  • Georgia Tech’s explained its research is happening at all the levels of the “semiconductor stack,” touting its 28,500 square feet of academic cleanroom space.
  • And in the past month Purdue University, Dassault Systems and Lam Research expanded an existing deal to use virtual twins and simulation tools in workforce development.

Arizona State University is beefing up their technology programs with a new bachelor’s and doctoral degree in robotics and autonomous systems.

Microsoft is partnering with Gateway Technical College in Wisconsin to create a Data Center Academy to train Wisconsinites for data center and STEM roles by 2030.

Research

Stanford-led researchers used ordinary-appearing glasses for an augmented reality headset, utilizing waveguide display techniques, holographic imaging, and AI.

UC Berkeley, LLNL, and MIT engineered a miniaturized on-chip energy storage and power delivery, using an atomic-scale approach to modify electrostatic capacitors.

ORNL and other researchers observed a “surprising isotope effect in the optoelectronic properties of a single layer of molybdenum disulfide” when they substituted heavier isotope of molybdenum in the crystal.

Three U.S. national labs are partnering with NVIDIA to develop advanced memory technologies for high performance computing.

In-Depth

In addition to this week’s Automotive, Security and Pervasive Computing newsletter, here are more top stories and tech talk from the week:

Events

Find upcoming chip industry events here, including:

Event Date Location
ASMC: Advanced Semiconductor Manufacturing Conference May 13 – 16 Albany, NY
ISES Taiwan 2024: International Semiconductor Executive Summit May 14 – 15 New Taipei City
Ansys Simulation World 2024 May 14 – 16 Online
Women In Semiconductors May 16 Albany, NY
European Test Symposium May 20 – 24 The Hague, Netherlands
NI Connect Austin 2024 May 20 – 22 Austin, Texas
ITF World 2024 (imec) May 21 – 22 Antwerp, Belgium
Embedded Vision Summit May 21 – 23 Santa Clara, CA
ASIP Virtual Seminar 2024 May 22 Online
Electronic Components and Technology Conference (ECTC) 2024 May 28 – 31 Denver, Colorado
Hardwear.io Security Trainings and Conference USA 2024 May 28 – Jun 1 Santa Clara, CA
Find All Upcoming Events Here

Upcoming webinars are here.

Further Reading

Read the latest special reports and top stories, or check out the latest newsletters:

Automotive, Security and Pervasive Computing
Systems and Design
Low Power-High Performance
Test, Measurement and Analytics
Manufacturing, Packaging and Materials

The post Chip Industry Week In Review appeared first on Semiconductor Engineering.

SRAM Security Concerns Grow

SRAM security concerns are intensifying as a combination of new and existing techniques allow hackers to tap into data for longer periods of time after a device is powered down.

This is particularly alarming as the leading edge of design shifts from planar SoCs to heterogeneous systems in package, such as those used in AI or edge processing, where chiplets frequently have their own memory hierarchy. Until now, most cybersecurity concerns involving volatile memory have focused on DRAM, because it is often external and easier to attack. SRAM, in contrast, does not contain a component as obviously vulnerable as a heat-sensitive capacitor, and in the past it has been harder to pinpoint. But as SoCs are disaggregated and more features are added into devices, SRAM is becoming a much bigger security concern.

The attack scheme is well understood. Known as cold boot, it was first identified in 2008, and is essentially a variant of a side-channel attack. In a cold boot approach, an attacker dumps data from internal SRAM to an external device, and then restarts the system from the external device with some code modification. “Cold boot is primarily targeted at SRAM, with the two primary defenses being isolation and in-memory encryption,” said Vijay Seshadri, distinguished engineer at Cycuity.

Compared with network-based attacks, such as DRAM’s rowhammer, cold boot is relatively simple. It relies on physical proximity and a can of compressed air.

The vulnerability was first described by Edward Felton, director of Princeton University’s Center for Information Technology Policy, J. Alex Halderman, currently director of the Center for Computer Security & Society at the University of Michigan, and colleagues. The breakthrough in their research was based on the growing realization in the engineering research community that data does not vanish from memory the moment a device is turned off, which until then was a common assumption. Instead, data in both DRAM and SRAM has a brief “remanence.”[1]

Using a cold boot approach, data can be retrieved, especially if an attacker sprays the chip with compressed air, cooling it enough to slow the degradation of the data. As the researchers described their approach, “We obtained surface temperatures of approximately −50°C with a simple cooling technique — discharging inverted cans of ‘canned air’ duster spray directly onto the chips. At these temperatures, we typically found that fewer than 1% of bits decayed even after 10 minutes without power.”

Unfortunately, despite nearly 20 years of security research since the publication of the Halderman paper, the authors’ warning still holds true. “Though we discuss several strategies for mitigating these risks, we know of no simple remedy that would eliminate them.”

However unrealistic, there is one simple and obvious remedy to cold boot — never leave a device unattended. But given human behavior, it’s safer to assume that every device is vulnerable, from smart watches to servers, as well as automotive chips used for increasingly autonomous driving.

While the original research exclusively examined DRAM, within the last six years cold boot has proven to be one of the most serious vulnerabilities for SRAM. In 2018, researchers at Germany’s Technische Universität Darmstadt published a paper describing a cold boot attack method that is highly resistant to memory erasure techniques, and which can be used to manipulate the cryptographic keys produced by the SRAM physical unclonable function (PUF).

As with so many security issues, it’s been a cat-and-mouse game between remedies and counter-attacks. And because cold boot takes advantage of slowing down memory degradation, in 2022 Yang-Kyu Choi and colleagues at the Korea Advanced Institute of Science and Technology (KAIST), described a way to undo the slowdown with an ultra-fast data sanitization method that worked within 5 ns, using back bias to control the device parameters of CMOS.

Fig. 1: Asymmetric forward back-biasing scheme for permanent erasing. (a) All the data are reset to 1. (b) All the data are reset to 0. Whether all the data where reset to 1 or 0 is determined by the asymmetric forward back-biasing scheme. Source: KAIST/Creative Commons [2]

Fig. 1: Asymmetric forward back-biasing scheme for permanent erasing. (a) All the data are reset to 1. (b) All the data are reset to 0. Whether all the data where reset to 1 or 0 is determined by the asymmetric forward back-biasing scheme. Source: KAIST/Creative Commons [2]

Their paper, as well as others, have inspired new approaches to combating cold boot attacks.

“To mitigate the risk of unauthorized access from unknown devices, main devices, or servers, check the authenticated code and unique identity of each accessing device,” said Jongsin Yun, memory technologist at Siemens EDA. “SRAM PUF is one of the ways to securely identify each device. SRAM is made of two inverters cross-coupled to each other. Although each inverter is designed to be the same device, normally one part of the inverter has a somewhat stronger NMOS than the other due to inherent random dopant fluctuation. During the initial power-on process, SRAM data will be either data 1 or 0, depending on which side has a stronger device. In other words, the initial data state of the SRAM array at the power on is decided by this unique random process variation and most of the bits maintain this property for life. One can use this unique pattern as a fingerprint of a device. The SRAM PUF data is reconstructed with other coded data to form a cryptographic key. SRAM PUF is a great way to anchor its secure data into hardware. Hackers may use a DFT circuit to access the memory. To avoid insecurely reading the SRAM information through DFT, the security-critical design makes DFT force delete the data as an initial process of TEST mode.”

However, there can be instances where data may be required to be kept in a non-volatile memory (NVM). “Data is considered insecure if the NVM is located outside of the device,” said Yun. “Therefore, secured data needs to be stored within the device with write protection. One-time programmable (OTP) memory or fuses are good storage options to prevent malicious attackers from tampering with the modified information. OTP memory and fuses are used to store cryptographic keys, authentication information, and other critical settings for operation within the device. It is useful for anti-rollback, which prevents hackers from exploiting old vulnerabilities that have been fixed in newer versions.”

Chiplet vulnerabilities
Chiplets also could present another vector for attack, due to their complexity and interconnections. “A chiplet has memory, so it’s going to be attacked,” said Cycuity’s Seshadri. “Chiplets, in general, are going to exacerbate the problem, rather than keeping it status quo, because you’re going to have one chiplet talking to another. Could an attack on one chiplet have a side effect on another? There need to be standards to address this. In fact, they’re coming into play already. A chiplet provider has to say, ‘Here’s what I’ve done for security. Here’s what needs to be done when interfacing with another chiplet.”

Yun notes there is a further physical vulnerability for those working with chiplets and SiPs. “When multiple chiplets are connected to form a SiP, we have to trust data coming from an external chip, which creates further complications. Verification of the chiplet’s authenticity becomes very important for SiPs, as there is a risk of malicious counterfeit chiplets being connected to the package for hacking purposes. Detection of such counterfeit chiplets is imperative.”

These precautions also apply when working with DRAM. In all situations, Seshardi said, thinking about security has to go beyond device-level protection. “The onus of protecting DRAM is not just on the DRAM designer or the memory designer,” he said. “It has to be secured by design principles when you are developing. In addition, you have to look at this holistically and do it at a system level. You must consider all the other things that communicate with DRAM or that are placed near DRAM. You must look at a holistic solution, all the way from software down to things like the memory controller and then finally, the DRAM itself.”

Encryption as a backup
Data itself always must be encrypted as second layer of protection against known and novel attacks, so an organization’s assets will still be protected even if someone breaks in via cold boot or another method.

“The first and primary method of preventing a cold boot attack is limiting physical access to the systems, or physically modifying the systems case or hardware preventing an attacker’s access,” said Jim Montgomery, market development director, semiconductor at TXOne Networks. “The most effective programmatic defense against an attack is to ensure encryption of memory using either a hardware- or software-based approach. Utilizing memory encryption will ensure that regardless of trying to dump the memory, or physically removing the memory, the encryption keys will remain secure.”

Montgomery also points out that TXOne is working with the Semiconductor Manufacturing Cybersecurity Consortium (SMCC) to develop common criteria based upon SEMI E187 and E188 standards to assist DM’s and OEM’s to implement secure procedures for systems security and integrity, including controlling the physical environment.

What kind and how much encryption will depend on use cases, said Jun Kawaguchi, global marketing executive for Winbond. “Encryption strength for a traffic signal controller is going to be different from encryption for nuclear plants or medical devices, critical applications where you need much higher levels,” he said. “There are different strengths and costs to it.”

Another problem, in the post-quantum era, is that encryption itself may be vulnerable. To defend against those possibilities, researchers are developing post-quantum encryption schemes. One way to stay a step ahead is homomorphic encryption [HE], which will find a role in data sharing, since computations can be performed on encrypted data without first having to decrypt it.

Homomorphic encryption could be in widespread use as soon as the next few years, according to Ronen Levy, senior manager for IBM’s Cloud Security & Privacy Technologies Department, and Omri Soceanu, AI Security Group manager at IBM.  However, there are still challenges to be overcome.

“There are three main inhibitors for widespread adoption of homomorphic encryption — performance, consumability, and standardization,” according to Levy. “The main inhibitor, by far, is performance. Homomorphic encryption comes with some latency and storage overheads. FHE hardware acceleration will be critical to solving these issues, as well as algorithmic and cryptographic solutions, but without the necessary expertise it can be quite challenging.”

An additional issue is that most consumers of HE technology, such as data scientists and application developers, do not possess deep cryptographic skills, HE solutions that are designed for cryptographers can be impractical. A few HE solutions require algorithmic and cryptographic expertise that inhibit adoption by those who lack these skills.

Finally, there is a lack of standardization. “Homomorphic encryption is in the process of being standardized,” said Soceanu. “But until it is fully standardized, large organizations may be hesitant to adopt a cryptographic solution that has not been approved by standardization bodies.”

Once these issues are resolved, they predicted widespread use as soon as the next few years. “Performance is already practical for a variety of use cases, and as hardware solutions for homomorphic encryption become a reality, more use cases would become practical,” said Levy. “Consumability is addressed by creating more solutions, making it easier and hopefully as frictionless as possible to move analytics to homomorphic encryption. Additionally, standardization efforts are already in progress.”

A new attack and an old problem
Unfortunately, security never will be as simple as making users more aware of their surroundings. Otherwise, cold boot could be completely eliminated as a threat. Instead, it’s essential to keep up with conference talks and the published literature, as graduate students keep probing SRAM for vulnerabilities, hopefully one step ahead of genuine attackers.

For example, SRAM-related cold boot attacks originally targeted discrete SRAM. The reason is that it’s far more complicated to attack on-chip SRAM, which is isolated from external probing and has minimal intrinsic capacitance. However, in 2022, Jubayer Mahmod, then a graduate student at Virginia Tech and his advisor, associate professor Matthew Hicks, demonstrated what they dubbed “Volt Boot,” a new method that could penetrate on-chip SRAM. According to their paper, “Volt Boot leverages asymmetrical power states (e.g., on vs. off) to force SRAM state retention across power cycles, eliminating the need for traditional cold boot attack enablers, such as low-temperature or intrinsic data retention time…Unlike other forms of SRAM data retention attacks, Volt Boot retrieves data with 100% accuracy — without any complex post-processing.”

Conclusion
While scientists and engineers continue to identify vulnerabilities and develop security solutions, decisions about how much security to include in a design is an economic one. Cost vs. risk is a complex formula that depends on the end application, the impact of a breach, and the likelihood that an attack will occur.

“It’s like insurance,” said Kawaguchi. “Security engineers and people like us who are trying to promote security solutions get frustrated because, similar to insurance pitches, people respond with skepticism. ‘Why would I need it? That problem has never happened before.’ Engineers have a hard time convincing their managers to spend that extra dollar on the costs because of this ‘it-never-happened-before’ attitude. In the end, there are compromises. Yet ultimately, it’s going to cost manufacturers a lot of money when suddenly there’s a deluge of demands to fix this situation right away.”

References

  1. S. Skorobogatov, “Low temperature data remanence in static RAM”, Technical report UCAM-CL-TR-536, University of Cambridge Computer Laboratory, June 2002.
  2. Han, SJ., Han, JK., Yun, GJ. et al. Ultra-fast data sanitization of SRAM by back-biasing to resist a cold boot attack. Sci Rep 12, 35 (2022). https://doi.org/10.1038/s41598-021-03994-2

The post SRAM Security Concerns Grow appeared first on Semiconductor Engineering.

Enhancing HMI Security: How To Protect ICS Environments From Cyber Threats

HMIs (Human Machine Interfaces) can be broadly defined as just about anything that allows humans to interface with their machines, and so are found throughout the technical world. In OT environments, operators use various HMIs to interact with industrial control systems in order to direct and monitor the operational systems. And wherever humans and machines intersect, security problems can ensue.

Protecting HMI in cybersecurity plans, particularly in OT/ICS environments, can be a challenge, as HMIs offer a variety of vulnerabilities that threat actors can exploit to achieve any number of goals, from extortion to sabotage.

Consider the sort of OT environments HMIs are found in, including water and power utilities, manufacturing facilities, chemical production, oil and gas infrastructure, smart buildings, hospitals, and more. The HMIs in these environments offer bad actors a range of attack vectors through which they can enter and begin to wreak havoc, either financial, physical, or both.

What’s the relationship between HMI and SCADA?

SCADA (supervisory control and data acquisition) systems are used to acquire and analyze data and control industrial systems. Because of the role SCADA plays in these settings — generally overseeing the control of hugely complex, expensive, and dangerous-if-misused industrial equipment, processes, and facilities — they are extremely attractive to threat actors.

Unfortunately, the HMIs that operators use to interface with these systems may contain a number of vulnerabilities that are among the most highly exploitable and frequently breached vectors for attacks against SCADA systems.

Once an attacker gains access, they can seize from operators the ability to control the system. They can cause machinery to malfunction and suffer irreparable damage; they can taint products, steal information, and extort ransom. Even beyond ransom demands, the cost of production stoppages, lost sales, equipment replacement, and reputational damage can swallow some companies and create shortages in the market. Attacks can also cause equipment to perform in ways that threaten human life and safety.

Three types of HMIs in ICS that are vulnerable to attack

HMI security has to account for a range of “vulnerability options” available for exploitation by bad actors, such as keyboards, touch screens, and tablets, as well as more sophisticated interface points. Among the more frequently attacked are the Graphical User Interface and mobile and remote access.

Graphical User Interface

Attackers can use the Graphical User Interface or GUI to gain complete access to the system and manipulate it at will. They can often gain access by exploiting misconfigured access controls or bugs and other vulnerabilities that exist in a lot of software, including GUI software. If the system is web- or network-connected, their work is easier, especially if introducing malware is a goal. Once in, they can also move laterally, exploring or compromising interconnected systems and widening the attack.

Mobile and remote access

Even before COVID-19, mobile and remote access techniques were already being incorporated into managing a growing number of OT networks. When the pandemic hit hard, remote access often became a necessity. As the crisis faded, however, mobile and remote access became even more entrenched.

Remote access points are especially vulnerable. For one, remote access software can contain its own security vulnerabilities, like unpatched flaws and bugs or misconfigurations. Attackers may find openings in VPNs (virtual private networks) or RDP (remote desktop protocol) and use these holes to slip past security measures and carry out their mission.

Access controls

Attackers can compromise access control mechanisms to acquire the same permissions and privileges as authorized users, and once they gain access, they can do pretty much anything they want regarding system operations and data access. Access can be gained in many of the usual ways, such as an outdated VPN or stolen or purchased credentials. (Stolen or other credentials are readily available through online markets.)

The initial attack may just be a toe in the network while reconnaissance for holes in the access control system is conducted. Weak passwords, unnecessary access rights, and the usual misconfigurations and software vulnerabilities are all an attacker needs. As further walls are breached, attackers can then escalate their level of privilege to do whatever a legitimate user can do.

Understanding attack techniques in ICS HMI cybersecurity

Code injection

When attackers insert or inject malicious code into a software program or system, that’s code injection, and it can give the attacker access to core system functions. The resulting mayhem can include manipulation of control software, leading to shutdowns, equipment damage, and dangerous, even life-threatening situations if system changes result in hazardous chemical releases, changed formulas, explosions, or the misbehavior of large, heavy machinery. Code injections can corrupt, delete, or steal data and may result in compliance failure and fines in certain situations.

Malware virus infection

Malware can enter a network through various access points in addition to HMIs, even ones no one would ever expect, such as manufacturer-provided software updates or factory-fresh physical assets added to the production environment. A technician connecting a laptop or an employee plugging in a flash drive without knowing it’s infected will work just as well. As the walls between IT and OT thin, that attack surface widens as well. Once in the network, the attacker can escalate privileges, look around a bit, and see what’s worth doing or stealing. When enough has been learned, the attacker executes the malicious code, which can include ransomware or spyware. As in other attacks, operations can be interfered with, sometimes dangerously so.

Data tampering

Data tampering simply means that data is altered without authorization, including data used to operate, control, and monitor industrial systems. Attackers gain access through vulnerabilities in the system software or HMI devices or through passageways between IT and OT. Once in, they can explore the system to give themselves even greater access to more sensitive areas, where they can steal valuable and confidential system data, interrupt operations, compromise equipment, and damage the company’s business interests and competitive advantage.

Memory corruption

Memory corruption can happen in any computer network and may not represent anything nefarious. Yet memory corruption has also been used as an attack technique that can be deployed against OT networks and is thus potentially extremely damaging since data controls machinery, processes, formulas, and other essential functions. Attackers find software vulnerabilities in HMI or other access points through which the memory of an application or system can be reached and corrupted. This can lead to crashes, data leakage, denial of services (DoS), and even attacker takeovers of ICS and SCADA systems.

Spear phishing

Spear phishing attacks are generally launched against IT networks, which can then be used to open a corridor to the OT network. Spear phishing is basically a more targeted version of phishing attacks, in which an attacker will impersonate a legitimate, trusted source via email or web page, for example. In 2014, attackers targeted a German steel mill with an email suspected of carrying malicious code. They then used access to the business network to get to the SCADA/ICS network, where they modified the PLCs (programmable logic controllers) and took over the furnace’s operations. The physical damage they inflicted forced the plant to shut down.

DoS and DDoS attacks

Denial of Service (DoS) and Distributed Denial of Service (DDoS) work by overwhelming HMI points with excessive traffic or requests so they are unable to handle authorized control and monitoring functions. In 2016, some particularly vicious malware dubbed Industroyer (also Crashoveride) was deployed in an attack against Ukraine’s power grid and blacked out a substantial section of Kyiv. Industroyer was developed specifically to attack ICS and SCADA systems. The multipronged attack began by exploiting vulnerabilities in digital substation relays. A timer regulating the attack executed a distributed denial-of-service (DDoS) attack on every protection relay on the network that used any of four specific communication protocols. Simultaneously, it deleted all MicroSCADA-related files from the workstations’ hard drives. As the relays stopped functioning, lights went out across the city.

Exploiting remote access

The growing use of remote access to HMI systems during and after COVID-19 has provided threat actors with a wealth of newly available attack vectors. Less-than-airtight remote access security protocols make them very enticing for ICS-specific malware. HAVEX malware, for example, uses a remote access trojan (RAT) downloaded from OT vendor websites. The RAT can then scan for devices on the ports commonly used OT assets, collect information, and send it back to the attacker’s command and control server. A long-term attack used just such a method to gain remote access to energy networks in the U.S. and internationally, during which data thieves collected and “exfiltrated” (stole) enterprise and ICS-related data.

Credential theft

Obtaining unauthorized credentials is not all that difficult these days, with a robust online marketplace making it easier than ever. Phishing and spear phishing, malware, weak passwords, and vulnerabilities or misconfigurations that grant access to places where unencrypted credentials are all sources. With credentials in hand, attackers can move past security, including MFA (multifactor authentication), conduct reconnaissance, and give themselves whatever level of privilege they need to complete whatever their mission is. Or they simply persist and observe, learning all they can before finally acting against the ICS or SCADA system.

Zero-day attacks

Zero-day attacks got their name because they’re generally carried out against a previously existing yet unknown vulnerability; the vendor has zero days to fix it because the attack is already underway. Vulnerabilities that are completely unknown to either the software developer or the cybersecurity community exist throughout the software world, including in OT networks and their HMIs. Unsuspected and thus unpatched, they give fast-moving threat actors the opportunity to carry out a zero-day attack without resistance. The 2010 Stuxnet attack against Iran’s nuclear program used zero-day vulnerabilities in Windows to access the network and spread, eventually destroying the centrifuges. One thousand machines sustained physical damage.

Best practices for enhancing HMI security

Network segmentation for isolation

Network segmentation should be a core defense in securing industrial networks. Segmentation creates an environment that’s naturally resistant to intruders. Many of the attack techniques described above give attackers the ability to move laterally through the network. Segmenting the network prevents this lateral movement, limiting the attack radius and potential for damage. As OT networks become more connected to the world and the line between IT and OT continues to blur, network segmentation can segregate HMI systems from other parts of the network and the outside world. It can also segment defined zones within the OT network from each other so attacks can be contained.

Software and firmware updates

Software and firmware updates are recommended in all cybersecurity situations, but installing patches and updates in OT networks is easier said than done. OT networks prioritize continuous operations. There are compatibility issues, unpatchable legacy systems, and other roadblocks. The solution is virtual patching. Virtual patching is achieved by identifying all vulnerabilities within an OT network and applying a security mechanism such as a physical IPS (intrusion prevention system) or firewall. Rules are created, traffic is inspected and filtered, and attacks can be blocked and investigated.

Employee training on cybersecurity awareness

The more employees know about network operations, vulnerabilities, and cyberattack methods, the more they can do to help protect the network. Since few organizations have the internal staff to provide the necessary training, third-party training partners can be a viable solution. In any event, all employees should be trained in a company’s written policies, the general threat landscape, security best practices, how to handle physical assets like flash drives or laptops, how to recognize an attack, and what the company’s response protocol is. Specific training should be provided for employees who work remotely.

The evolving HMI security threat landscape

Concrete predictions about future threats and responses are hard to make, but the HMI security threat landscape will most likely evolve much the same way the entire security landscape will, with one major addition.

Air-gapped environments are going away

For a long time, many OT networks were air-gapped off from the world, physically and digitally isolated from the risks of contamination. Data and malware transfer alike required physical media, but inconvenience was safety. As OT networks continue to merge with the connected world, that kind of protection is going away. Remote work is becoming more prevalent, and the very connected IoT (Internet of Things) is now all over the automated factory floor. If wireless access points are left hanging from equipment, no one gives it a thought, except threat actors looking for a way in. (This is where basic employee training might help.)

Threat actors are innovators

Threat actors are becoming increasingly sophisticated. They devote much more time and thought to innovative ways to penetrate HMI and other OT network points than the people who operate them. AI and machine learning techniques are further empowering bad actors.

The statistics bear this out, especially as IT and OT networks continue to converge. In a study on 2023 OT/ICS cybersecurity activities, 76% of organizations were moving toward converged networks, and 97% reported IT security incidents also affected OT environments. Nearly half (47%) of businesses reported OT/ICS ransomware attacks, and 76% had significant concerns about state-sponsored actors.

On the positive side, however, pressure from regulators, insurance companies, and boards of directors is pushing organizations to think and act on cybersecurity for HMI points and throughout the network far more aggressively than many currently do. According to the study, 68% of organizations were increasing their budgets, 38% had dedicated OT security teams, and 77% had achieved a level-3 maturity in OT/ICS security.

Complete OT security

Cybersecurity in industrial environments presents challenges far different than those in IT networks. TXOne specializes in OT cybersecurity, with OT-native solutions designed for the equipment, environment, and day-to-day realities of industrial settings.

The post Enhancing HMI Security: How To Protect ICS Environments From Cyber Threats appeared first on Semiconductor Engineering.

Chip Industry Week In Review

Synopsys refocused its security priorities around chips, striking a deal to sell off its Software Integrity Group subsidiary to private equity firms Clearlake Capital Group and Francisco Partners for about $2.1 billion. That deal comes on the heels of Synopsys’ recent acquisition of Intrinsic ID, which develops physical unclonable function IP. Sassine Ghazi, Synopsys’ president and CEO, said in an interview that the sale of the software group “gives us the ability to have management bandwidth, capital, and to double down on what we’re doing in our core business.”

The U.S. Commerce Department reportedly pulled export licenses from Intel and Qualcomm that permitted them to ship semiconductors to Huawei, the Financial Times reported. The move comes after advanced chips from Intel reportedly were used in new laptops and smartphones from the China-based company. 

Apple debuted its second-generation 3nm M4 chip with the launch of the new iPad Pro. The CPU and GPU each have up to 10 cores, with a neural engine capable of 38 TOPS, and a total of 28 billion transistors. Apple also is working with TSMC to develop its own AI processors for running software in data centers, reports The Wall Street Journal.

The U.S. is expected to triple its semiconductor manufacturing capacity by 2032, according to a new report by the Semiconductor Industry Association and Boston Consulting. By that year, the U.S. is projected to have 28% of global capacity for advanced logic manufacturing and over a quarter of total global capital expenditures.

Fig. 1: Source: Semiconductor Industry Association and Boston Consulting Group.

Quick links to more news:

Global
Market Reports
Automotive
Security
Product News
Education and Training
Research
In-Depth
Events
Further Reading

Around The Globe

The U.S. Commerce Department plans to solicit bids from organizations interested in creating and managing a new CHIPS Manufacturing USA institute focused on digital twins in the semiconductor sector. The government will award up to $285 million to the selected proposal.

The U.S. National Science Foundation and Department of Energy announced the first 35 projects to be supported with computational time through the National Artificial Intelligence Research Resource (NAIRR) Pilot. The initial selected projects will gain access to several U.S. supercomputing centers and other resources, with the goal of advancing responsible AI research.

Through its new Federal AI Sandbox, MITRE is offering up its computing power to U.S. government agencies. “Our new Federal AI Sandbox will help level the playing field, making the high-quality compute power needed to train and test custom AI solutions available to any agency,” stated Charles Clancy, MITRE, senior vice president and chief technology officer, in the release.

Saudi Arabia’s $100 billion investment fund for semiconductor and AI technology pledged it would divest from China if requested by the U.S, reported Bloomberg.

Japan’s SoftBank is holding talks with UK-based AI Chip firm Graphcore about a possible acquisition, reports Bloomberg.

India’s chip industry is heating up. Mindgrove launched the country’s first SoC, named Secure IoT. The chip clocks at 700 MHz, and the company is touting its key security algorithms, secure boot, and on-chip OTP memory. Meanwhile, Lam Research is expanding its global semiconductor fabrication supply chain to include India.

Microsoft will build a $3.3 billion AI data center in Racine, Wisconsin, the same location as the failed Foxconn investment touted six years ago.

Markets And Money

The SIA announced first-quarter global semiconductor sales grew more than 15% YoY, still 5.7% below Q4 2023, but a big improvement over last year. Consider that the semiconductor materials market contracted 8.2% in 2023 to $66.7 billion, down from a record $72.7 billion in 2022, according to a new report from SEMI.

The demand for AI-powered consumer electronics will drive global AI chipset shipments to 1.3 billion by 2030, according to ABI Research.

TrendForce released several new industry reports this week. Among the highlights:

  • HBM prices are expected to increase by up to 10% in 2025, representing more than 30% of total DRAM value.
  • In Q2, DRAM contract prices rose 13% to 18%, while NAND flash prices increased 15% to 20%.
  • The top 10 design firms’ combined revenue increased 12% in 2023, with NVIDIA taking the lead for the first time.

A number of acquisitions were announced recently:

  • High-voltage IC company, Power Integrations, will purchase the assets of Odyssey Semiconductor Technologies, a developer of gallium nitride (GaN) transistors.
  • Mobix Labs agreed to buy RF design company RaGE Systems for $20 million in cash, stock, and incentives.
  • V-Tek, a packaging services and inspection company, acquired A&J Programming, a manufacturer of automated handling and programming equipment.

The global smartphone market grew 6% year-over-year, shipping 296.9 million units in Q124, according to a Counterpoint report.  Samsung toppled Apple for the top spot with a 20% share.

Automotive

U.S. Justice Department is investigating whether Tesla committed securities or wire fraud for misleading consumers and investors about its EV’s autopilot capabilities, according to Reuters.

The automotive ecosystem is undergoing a huge transformation toward software-defined vehicles, spurring new architectures that can be future-proofed and customized with software.

Infineon introduced a microcontroller for the automotive battery management sector, integrating high-precision analog and high-voltage subsystems on a single chip. Infineon also inked a deal with China’s Xiaomi to provide SiC power modules for Xiaomi’s new SU7 smart EV.

Keysight and ETAS are teaming up to embed ETAS fuzz testing software into Keysight’s automotive cybersecurity platform.

Also, Keysight’s device security research lab, Riscure Security Solutions, can now conduct vehicle type approval evaluations under United Nations R155/R156 regulations. Keysight acquired Riscure in March.

Two autonomous driving companies received big funding. British AI company Wayve received a $1.05 billion Series C investment from SoftBank, with contributions from NVIDIA and Microsoft. Hyundai spent an additional $475 million on Motional, according its recent earnings report.

The automotive imaging market grew to U.S. $5.7 billion in 2023 due to increased production, autonomy demand, and higher-resolution offerings.

Automotive Grade Linux (AGL), a collaborative cross-industry effort developing an open source platform for all Software-Defined Vehicles (SDVs), released cloud-native functionality, RISC-V architecture and flutter applications.

Security

SRAM security concerns are intensifying as a combination of new and existing techniques allow hackers to tap into data for longer periods of time after a device is powered down. This is particularly alarming as the leading edge of design shifts to heterogeneous systems in package, where chiplets frequently have their own memory hierarchy.

Machine learning is being used by hackers to find weaknesses in chips and systems, but it also is starting to be used to prevent breaches by pinpointing hardware and software design flaws.

txOne Networks, provider of Cyber-Physical Systems security, raised $51 million in Series B extension round of funding.

The U.S. Department of Justice charged a Russian national with his role as the creator, developer and administrator of the LockBit, a prolific ramsomware group, that allegedly stole $100 million in payments from 2,000 victims.

The Cybersecurity and Infrastructure Security Agency (CISA) launched “We Can Secure Our World,” a new public awareness program promoting “basic cyber hygiene” and the agency also issues a number of alerts/advisories.

Product News

Siemens unveiled its Solido IP Validation Suite software, an automated quality assurance product designed to work across all design IP types and formats. The suite includes Solido Crosscheck and IPdelta software, which both provide in-view, cross-view and version-to-version QA checks.

proteanTecs announced its lifecycle monitoring solution is being integrated into SAPEON’s new AI processors.

SpiNNcloud Systems revealed their SpiNNaker2 system, an event-based AI platform supercomputer containing chips that are a mesh of 152 ARM-based cores. The platform has the ability to emulate 10 billion neurons while still maintaining power efficiency and reliability.

Ansys partnered with Schrodinger to develop new computational materials. The collaboration will see Schrodinger’s molecular modeling technology used in Ansys’ simulation tools to evaluate performance ahead of the prototype phase.

Keysight introduced a pulse generator to its handheld radio frequency analyzer software options. The Option 357 pulse generator is downloadable on B- and C-Series FieldFox analyzers.

Education and Training

Semiconductor fever is hitting academia:

  • Penn State discussed its role in leading 15 universities to drive advances in chip integration and packaging.
  • Georgia Tech’s explained its research is happening at all the levels of the “semiconductor stack,” touting its 28,500 square feet of academic cleanroom space.
  • And in the past month Purdue University, Dassault Systems and Lam Research expanded an existing deal to use virtual twins and simulation tools in workforce development.

Arizona State University is beefing up their technology programs with a new bachelor’s and doctoral degree in robotics and autonomous systems.

Microsoft is partnering with Gateway Technical College in Wisconsin to create a Data Center Academy to train Wisconsinites for data center and STEM roles by 2030.

Research

Stanford-led researchers used ordinary-appearing glasses for an augmented reality headset, utilizing waveguide display techniques, holographic imaging, and AI.

UC Berkeley, LLNL, and MIT engineered a miniaturized on-chip energy storage and power delivery, using an atomic-scale approach to modify electrostatic capacitors.

ORNL and other researchers observed a “surprising isotope effect in the optoelectronic properties of a single layer of molybdenum disulfide” when they substituted heavier isotope of molybdenum in the crystal.

Three U.S. national labs are partnering with NVIDIA to develop advanced memory technologies for high performance computing.

In-Depth

In addition to this week’s Automotive, Security and Pervasive Computing newsletter, here are more top stories and tech talk from the week:

Events

Find upcoming chip industry events here, including:

Event Date Location
ASMC: Advanced Semiconductor Manufacturing Conference May 13 – 16 Albany, NY
ISES Taiwan 2024: International Semiconductor Executive Summit May 14 – 15 New Taipei City
Ansys Simulation World 2024 May 14 – 16 Online
Women In Semiconductors May 16 Albany, NY
European Test Symposium May 20 – 24 The Hague, Netherlands
NI Connect Austin 2024 May 20 – 22 Austin, Texas
ITF World 2024 (imec) May 21 – 22 Antwerp, Belgium
Embedded Vision Summit May 21 – 23 Santa Clara, CA
ASIP Virtual Seminar 2024 May 22 Online
Electronic Components and Technology Conference (ECTC) 2024 May 28 – 31 Denver, Colorado
Hardwear.io Security Trainings and Conference USA 2024 May 28 – Jun 1 Santa Clara, CA
Find All Upcoming Events Here

Upcoming webinars are here.

Further Reading

Read the latest special reports and top stories, or check out the latest newsletters:

Automotive, Security and Pervasive Computing
Systems and Design
Low Power-High Performance
Test, Measurement and Analytics
Manufacturing, Packaging and Materials

The post Chip Industry Week In Review appeared first on Semiconductor Engineering.

SRAM Security Concerns Grow

SRAM security concerns are intensifying as a combination of new and existing techniques allow hackers to tap into data for longer periods of time after a device is powered down.

This is particularly alarming as the leading edge of design shifts from planar SoCs to heterogeneous systems in package, such as those used in AI or edge processing, where chiplets frequently have their own memory hierarchy. Until now, most cybersecurity concerns involving volatile memory have focused on DRAM, because it is often external and easier to attack. SRAM, in contrast, does not contain a component as obviously vulnerable as a heat-sensitive capacitor, and in the past it has been harder to pinpoint. But as SoCs are disaggregated and more features are added into devices, SRAM is becoming a much bigger security concern.

The attack scheme is well understood. Known as cold boot, it was first identified in 2008, and is essentially a variant of a side-channel attack. In a cold boot approach, an attacker dumps data from internal SRAM to an external device, and then restarts the system from the external device with some code modification. “Cold boot is primarily targeted at SRAM, with the two primary defenses being isolation and in-memory encryption,” said Vijay Seshadri, distinguished engineer at Cycuity.

Compared with network-based attacks, such as DRAM’s rowhammer, cold boot is relatively simple. It relies on physical proximity and a can of compressed air.

The vulnerability was first described by Edward Felton, director of Princeton University’s Center for Information Technology Policy, J. Alex Halderman, currently director of the Center for Computer Security & Society at the University of Michigan, and colleagues. The breakthrough in their research was based on the growing realization in the engineering research community that data does not vanish from memory the moment a device is turned off, which until then was a common assumption. Instead, data in both DRAM and SRAM has a brief “remanence.”[1]

Using a cold boot approach, data can be retrieved, especially if an attacker sprays the chip with compressed air, cooling it enough to slow the degradation of the data. As the researchers described their approach, “We obtained surface temperatures of approximately −50°C with a simple cooling technique — discharging inverted cans of ‘canned air’ duster spray directly onto the chips. At these temperatures, we typically found that fewer than 1% of bits decayed even after 10 minutes without power.”

Unfortunately, despite nearly 20 years of security research since the publication of the Halderman paper, the authors’ warning still holds true. “Though we discuss several strategies for mitigating these risks, we know of no simple remedy that would eliminate them.”

However unrealistic, there is one simple and obvious remedy to cold boot — never leave a device unattended. But given human behavior, it’s safer to assume that every device is vulnerable, from smart watches to servers, as well as automotive chips used for increasingly autonomous driving.

While the original research exclusively examined DRAM, within the last six years cold boot has proven to be one of the most serious vulnerabilities for SRAM. In 2018, researchers at Germany’s Technische Universität Darmstadt published a paper describing a cold boot attack method that is highly resistant to memory erasure techniques, and which can be used to manipulate the cryptographic keys produced by the SRAM physical unclonable function (PUF).

As with so many security issues, it’s been a cat-and-mouse game between remedies and counter-attacks. And because cold boot takes advantage of slowing down memory degradation, in 2022 Yang-Kyu Choi and colleagues at the Korea Advanced Institute of Science and Technology (KAIST), described a way to undo the slowdown with an ultra-fast data sanitization method that worked within 5 ns, using back bias to control the device parameters of CMOS.

Fig. 1: Asymmetric forward back-biasing scheme for permanent erasing. (a) All the data are reset to 1. (b) All the data are reset to 0. Whether all the data where reset to 1 or 0 is determined by the asymmetric forward back-biasing scheme. Source: KAIST/Creative Commons [2]

Fig. 1: Asymmetric forward back-biasing scheme for permanent erasing. (a) All the data are reset to 1. (b) All the data are reset to 0. Whether all the data where reset to 1 or 0 is determined by the asymmetric forward back-biasing scheme. Source: KAIST/Creative Commons [2]

Their paper, as well as others, have inspired new approaches to combating cold boot attacks.

“To mitigate the risk of unauthorized access from unknown devices, main devices, or servers, check the authenticated code and unique identity of each accessing device,” said Jongsin Yun, memory technologist at Siemens EDA. “SRAM PUF is one of the ways to securely identify each device. SRAM is made of two inverters cross-coupled to each other. Although each inverter is designed to be the same device, normally one part of the inverter has a somewhat stronger NMOS than the other due to inherent random dopant fluctuation. During the initial power-on process, SRAM data will be either data 1 or 0, depending on which side has a stronger device. In other words, the initial data state of the SRAM array at the power on is decided by this unique random process variation and most of the bits maintain this property for life. One can use this unique pattern as a fingerprint of a device. The SRAM PUF data is reconstructed with other coded data to form a cryptographic key. SRAM PUF is a great way to anchor its secure data into hardware. Hackers may use a DFT circuit to access the memory. To avoid insecurely reading the SRAM information through DFT, the security-critical design makes DFT force delete the data as an initial process of TEST mode.”

However, there can be instances where data may be required to be kept in a non-volatile memory (NVM). “Data is considered insecure if the NVM is located outside of the device,” said Yun. “Therefore, secured data needs to be stored within the device with write protection. One-time programmable (OTP) memory or fuses are good storage options to prevent malicious attackers from tampering with the modified information. OTP memory and fuses are used to store cryptographic keys, authentication information, and other critical settings for operation within the device. It is useful for anti-rollback, which prevents hackers from exploiting old vulnerabilities that have been fixed in newer versions.”

Chiplet vulnerabilities
Chiplets also could present another vector for attack, due to their complexity and interconnections. “A chiplet has memory, so it’s going to be attacked,” said Cycuity’s Seshadri. “Chiplets, in general, are going to exacerbate the problem, rather than keeping it status quo, because you’re going to have one chiplet talking to another. Could an attack on one chiplet have a side effect on another? There need to be standards to address this. In fact, they’re coming into play already. A chiplet provider has to say, ‘Here’s what I’ve done for security. Here’s what needs to be done when interfacing with another chiplet.”

Yun notes there is a further physical vulnerability for those working with chiplets and SiPs. “When multiple chiplets are connected to form a SiP, we have to trust data coming from an external chip, which creates further complications. Verification of the chiplet’s authenticity becomes very important for SiPs, as there is a risk of malicious counterfeit chiplets being connected to the package for hacking purposes. Detection of such counterfeit chiplets is imperative.”

These precautions also apply when working with DRAM. In all situations, Seshardi said, thinking about security has to go beyond device-level protection. “The onus of protecting DRAM is not just on the DRAM designer or the memory designer,” he said. “It has to be secured by design principles when you are developing. In addition, you have to look at this holistically and do it at a system level. You must consider all the other things that communicate with DRAM or that are placed near DRAM. You must look at a holistic solution, all the way from software down to things like the memory controller and then finally, the DRAM itself.”

Encryption as a backup
Data itself always must be encrypted as second layer of protection against known and novel attacks, so an organization’s assets will still be protected even if someone breaks in via cold boot or another method.

“The first and primary method of preventing a cold boot attack is limiting physical access to the systems, or physically modifying the systems case or hardware preventing an attacker’s access,” said Jim Montgomery, market development director, semiconductor at TXOne Networks. “The most effective programmatic defense against an attack is to ensure encryption of memory using either a hardware- or software-based approach. Utilizing memory encryption will ensure that regardless of trying to dump the memory, or physically removing the memory, the encryption keys will remain secure.”

Montgomery also points out that TXOne is working with the Semiconductor Manufacturing Cybersecurity Consortium (SMCC) to develop common criteria based upon SEMI E187 and E188 standards to assist DM’s and OEM’s to implement secure procedures for systems security and integrity, including controlling the physical environment.

What kind and how much encryption will depend on use cases, said Jun Kawaguchi, global marketing executive for Winbond. “Encryption strength for a traffic signal controller is going to be different from encryption for nuclear plants or medical devices, critical applications where you need much higher levels,” he said. “There are different strengths and costs to it.”

Another problem, in the post-quantum era, is that encryption itself may be vulnerable. To defend against those possibilities, researchers are developing post-quantum encryption schemes. One way to stay a step ahead is homomorphic encryption [HE], which will find a role in data sharing, since computations can be performed on encrypted data without first having to decrypt it.

Homomorphic encryption could be in widespread use as soon as the next few years, according to Ronen Levy, senior manager for IBM’s Cloud Security & Privacy Technologies Department, and Omri Soceanu, AI Security Group manager at IBM.  However, there are still challenges to be overcome.

“There are three main inhibitors for widespread adoption of homomorphic encryption — performance, consumability, and standardization,” according to Levy. “The main inhibitor, by far, is performance. Homomorphic encryption comes with some latency and storage overheads. FHE hardware acceleration will be critical to solving these issues, as well as algorithmic and cryptographic solutions, but without the necessary expertise it can be quite challenging.”

An additional issue is that most consumers of HE technology, such as data scientists and application developers, do not possess deep cryptographic skills, HE solutions that are designed for cryptographers can be impractical. A few HE solutions require algorithmic and cryptographic expertise that inhibit adoption by those who lack these skills.

Finally, there is a lack of standardization. “Homomorphic encryption is in the process of being standardized,” said Soceanu. “But until it is fully standardized, large organizations may be hesitant to adopt a cryptographic solution that has not been approved by standardization bodies.”

Once these issues are resolved, they predicted widespread use as soon as the next few years. “Performance is already practical for a variety of use cases, and as hardware solutions for homomorphic encryption become a reality, more use cases would become practical,” said Levy. “Consumability is addressed by creating more solutions, making it easier and hopefully as frictionless as possible to move analytics to homomorphic encryption. Additionally, standardization efforts are already in progress.”

A new attack and an old problem
Unfortunately, security never will be as simple as making users more aware of their surroundings. Otherwise, cold boot could be completely eliminated as a threat. Instead, it’s essential to keep up with conference talks and the published literature, as graduate students keep probing SRAM for vulnerabilities, hopefully one step ahead of genuine attackers.

For example, SRAM-related cold boot attacks originally targeted discrete SRAM. The reason is that it’s far more complicated to attack on-chip SRAM, which is isolated from external probing and has minimal intrinsic capacitance. However, in 2022, Jubayer Mahmod, then a graduate student at Virginia Tech and his advisor, associate professor Matthew Hicks, demonstrated what they dubbed “Volt Boot,” a new method that could penetrate on-chip SRAM. According to their paper, “Volt Boot leverages asymmetrical power states (e.g., on vs. off) to force SRAM state retention across power cycles, eliminating the need for traditional cold boot attack enablers, such as low-temperature or intrinsic data retention time…Unlike other forms of SRAM data retention attacks, Volt Boot retrieves data with 100% accuracy — without any complex post-processing.”

Conclusion
While scientists and engineers continue to identify vulnerabilities and develop security solutions, decisions about how much security to include in a design is an economic one. Cost vs. risk is a complex formula that depends on the end application, the impact of a breach, and the likelihood that an attack will occur.

“It’s like insurance,” said Kawaguchi. “Security engineers and people like us who are trying to promote security solutions get frustrated because, similar to insurance pitches, people respond with skepticism. ‘Why would I need it? That problem has never happened before.’ Engineers have a hard time convincing their managers to spend that extra dollar on the costs because of this ‘it-never-happened-before’ attitude. In the end, there are compromises. Yet ultimately, it’s going to cost manufacturers a lot of money when suddenly there’s a deluge of demands to fix this situation right away.”

References

  1. S. Skorobogatov, “Low temperature data remanence in static RAM”, Technical report UCAM-CL-TR-536, University of Cambridge Computer Laboratory, June 2002.
  2. Han, SJ., Han, JK., Yun, GJ. et al. Ultra-fast data sanitization of SRAM by back-biasing to resist a cold boot attack. Sci Rep 12, 35 (2022). https://doi.org/10.1038/s41598-021-03994-2

The post SRAM Security Concerns Grow appeared first on Semiconductor Engineering.

Enhancing HMI Security: How To Protect ICS Environments From Cyber Threats

HMIs (Human Machine Interfaces) can be broadly defined as just about anything that allows humans to interface with their machines, and so are found throughout the technical world. In OT environments, operators use various HMIs to interact with industrial control systems in order to direct and monitor the operational systems. And wherever humans and machines intersect, security problems can ensue.

Protecting HMI in cybersecurity plans, particularly in OT/ICS environments, can be a challenge, as HMIs offer a variety of vulnerabilities that threat actors can exploit to achieve any number of goals, from extortion to sabotage.

Consider the sort of OT environments HMIs are found in, including water and power utilities, manufacturing facilities, chemical production, oil and gas infrastructure, smart buildings, hospitals, and more. The HMIs in these environments offer bad actors a range of attack vectors through which they can enter and begin to wreak havoc, either financial, physical, or both.

What’s the relationship between HMI and SCADA?

SCADA (supervisory control and data acquisition) systems are used to acquire and analyze data and control industrial systems. Because of the role SCADA plays in these settings — generally overseeing the control of hugely complex, expensive, and dangerous-if-misused industrial equipment, processes, and facilities — they are extremely attractive to threat actors.

Unfortunately, the HMIs that operators use to interface with these systems may contain a number of vulnerabilities that are among the most highly exploitable and frequently breached vectors for attacks against SCADA systems.

Once an attacker gains access, they can seize from operators the ability to control the system. They can cause machinery to malfunction and suffer irreparable damage; they can taint products, steal information, and extort ransom. Even beyond ransom demands, the cost of production stoppages, lost sales, equipment replacement, and reputational damage can swallow some companies and create shortages in the market. Attacks can also cause equipment to perform in ways that threaten human life and safety.

Three types of HMIs in ICS that are vulnerable to attack

HMI security has to account for a range of “vulnerability options” available for exploitation by bad actors, such as keyboards, touch screens, and tablets, as well as more sophisticated interface points. Among the more frequently attacked are the Graphical User Interface and mobile and remote access.

Graphical User Interface

Attackers can use the Graphical User Interface or GUI to gain complete access to the system and manipulate it at will. They can often gain access by exploiting misconfigured access controls or bugs and other vulnerabilities that exist in a lot of software, including GUI software. If the system is web- or network-connected, their work is easier, especially if introducing malware is a goal. Once in, they can also move laterally, exploring or compromising interconnected systems and widening the attack.

Mobile and remote access

Even before COVID-19, mobile and remote access techniques were already being incorporated into managing a growing number of OT networks. When the pandemic hit hard, remote access often became a necessity. As the crisis faded, however, mobile and remote access became even more entrenched.

Remote access points are especially vulnerable. For one, remote access software can contain its own security vulnerabilities, like unpatched flaws and bugs or misconfigurations. Attackers may find openings in VPNs (virtual private networks) or RDP (remote desktop protocol) and use these holes to slip past security measures and carry out their mission.

Access controls

Attackers can compromise access control mechanisms to acquire the same permissions and privileges as authorized users, and once they gain access, they can do pretty much anything they want regarding system operations and data access. Access can be gained in many of the usual ways, such as an outdated VPN or stolen or purchased credentials. (Stolen or other credentials are readily available through online markets.)

The initial attack may just be a toe in the network while reconnaissance for holes in the access control system is conducted. Weak passwords, unnecessary access rights, and the usual misconfigurations and software vulnerabilities are all an attacker needs. As further walls are breached, attackers can then escalate their level of privilege to do whatever a legitimate user can do.

Understanding attack techniques in ICS HMI cybersecurity

Code injection

When attackers insert or inject malicious code into a software program or system, that’s code injection, and it can give the attacker access to core system functions. The resulting mayhem can include manipulation of control software, leading to shutdowns, equipment damage, and dangerous, even life-threatening situations if system changes result in hazardous chemical releases, changed formulas, explosions, or the misbehavior of large, heavy machinery. Code injections can corrupt, delete, or steal data and may result in compliance failure and fines in certain situations.

Malware virus infection

Malware can enter a network through various access points in addition to HMIs, even ones no one would ever expect, such as manufacturer-provided software updates or factory-fresh physical assets added to the production environment. A technician connecting a laptop or an employee plugging in a flash drive without knowing it’s infected will work just as well. As the walls between IT and OT thin, that attack surface widens as well. Once in the network, the attacker can escalate privileges, look around a bit, and see what’s worth doing or stealing. When enough has been learned, the attacker executes the malicious code, which can include ransomware or spyware. As in other attacks, operations can be interfered with, sometimes dangerously so.

Data tampering

Data tampering simply means that data is altered without authorization, including data used to operate, control, and monitor industrial systems. Attackers gain access through vulnerabilities in the system software or HMI devices or through passageways between IT and OT. Once in, they can explore the system to give themselves even greater access to more sensitive areas, where they can steal valuable and confidential system data, interrupt operations, compromise equipment, and damage the company’s business interests and competitive advantage.

Memory corruption

Memory corruption can happen in any computer network and may not represent anything nefarious. Yet memory corruption has also been used as an attack technique that can be deployed against OT networks and is thus potentially extremely damaging since data controls machinery, processes, formulas, and other essential functions. Attackers find software vulnerabilities in HMI or other access points through which the memory of an application or system can be reached and corrupted. This can lead to crashes, data leakage, denial of services (DoS), and even attacker takeovers of ICS and SCADA systems.

Spear phishing

Spear phishing attacks are generally launched against IT networks, which can then be used to open a corridor to the OT network. Spear phishing is basically a more targeted version of phishing attacks, in which an attacker will impersonate a legitimate, trusted source via email or web page, for example. In 2014, attackers targeted a German steel mill with an email suspected of carrying malicious code. They then used access to the business network to get to the SCADA/ICS network, where they modified the PLCs (programmable logic controllers) and took over the furnace’s operations. The physical damage they inflicted forced the plant to shut down.

DoS and DDoS attacks

Denial of Service (DoS) and Distributed Denial of Service (DDoS) work by overwhelming HMI points with excessive traffic or requests so they are unable to handle authorized control and monitoring functions. In 2016, some particularly vicious malware dubbed Industroyer (also Crashoveride) was deployed in an attack against Ukraine’s power grid and blacked out a substantial section of Kyiv. Industroyer was developed specifically to attack ICS and SCADA systems. The multipronged attack began by exploiting vulnerabilities in digital substation relays. A timer regulating the attack executed a distributed denial-of-service (DDoS) attack on every protection relay on the network that used any of four specific communication protocols. Simultaneously, it deleted all MicroSCADA-related files from the workstations’ hard drives. As the relays stopped functioning, lights went out across the city.

Exploiting remote access

The growing use of remote access to HMI systems during and after COVID-19 has provided threat actors with a wealth of newly available attack vectors. Less-than-airtight remote access security protocols make them very enticing for ICS-specific malware. HAVEX malware, for example, uses a remote access trojan (RAT) downloaded from OT vendor websites. The RAT can then scan for devices on the ports commonly used OT assets, collect information, and send it back to the attacker’s command and control server. A long-term attack used just such a method to gain remote access to energy networks in the U.S. and internationally, during which data thieves collected and “exfiltrated” (stole) enterprise and ICS-related data.

Credential theft

Obtaining unauthorized credentials is not all that difficult these days, with a robust online marketplace making it easier than ever. Phishing and spear phishing, malware, weak passwords, and vulnerabilities or misconfigurations that grant access to places where unencrypted credentials are all sources. With credentials in hand, attackers can move past security, including MFA (multifactor authentication), conduct reconnaissance, and give themselves whatever level of privilege they need to complete whatever their mission is. Or they simply persist and observe, learning all they can before finally acting against the ICS or SCADA system.

Zero-day attacks

Zero-day attacks got their name because they’re generally carried out against a previously existing yet unknown vulnerability; the vendor has zero days to fix it because the attack is already underway. Vulnerabilities that are completely unknown to either the software developer or the cybersecurity community exist throughout the software world, including in OT networks and their HMIs. Unsuspected and thus unpatched, they give fast-moving threat actors the opportunity to carry out a zero-day attack without resistance. The 2010 Stuxnet attack against Iran’s nuclear program used zero-day vulnerabilities in Windows to access the network and spread, eventually destroying the centrifuges. One thousand machines sustained physical damage.

Best practices for enhancing HMI security

Network segmentation for isolation

Network segmentation should be a core defense in securing industrial networks. Segmentation creates an environment that’s naturally resistant to intruders. Many of the attack techniques described above give attackers the ability to move laterally through the network. Segmenting the network prevents this lateral movement, limiting the attack radius and potential for damage. As OT networks become more connected to the world and the line between IT and OT continues to blur, network segmentation can segregate HMI systems from other parts of the network and the outside world. It can also segment defined zones within the OT network from each other so attacks can be contained.

Software and firmware updates

Software and firmware updates are recommended in all cybersecurity situations, but installing patches and updates in OT networks is easier said than done. OT networks prioritize continuous operations. There are compatibility issues, unpatchable legacy systems, and other roadblocks. The solution is virtual patching. Virtual patching is achieved by identifying all vulnerabilities within an OT network and applying a security mechanism such as a physical IPS (intrusion prevention system) or firewall. Rules are created, traffic is inspected and filtered, and attacks can be blocked and investigated.

Employee training on cybersecurity awareness

The more employees know about network operations, vulnerabilities, and cyberattack methods, the more they can do to help protect the network. Since few organizations have the internal staff to provide the necessary training, third-party training partners can be a viable solution. In any event, all employees should be trained in a company’s written policies, the general threat landscape, security best practices, how to handle physical assets like flash drives or laptops, how to recognize an attack, and what the company’s response protocol is. Specific training should be provided for employees who work remotely.

The evolving HMI security threat landscape

Concrete predictions about future threats and responses are hard to make, but the HMI security threat landscape will most likely evolve much the same way the entire security landscape will, with one major addition.

Air-gapped environments are going away

For a long time, many OT networks were air-gapped off from the world, physically and digitally isolated from the risks of contamination. Data and malware transfer alike required physical media, but inconvenience was safety. As OT networks continue to merge with the connected world, that kind of protection is going away. Remote work is becoming more prevalent, and the very connected IoT (Internet of Things) is now all over the automated factory floor. If wireless access points are left hanging from equipment, no one gives it a thought, except threat actors looking for a way in. (This is where basic employee training might help.)

Threat actors are innovators

Threat actors are becoming increasingly sophisticated. They devote much more time and thought to innovative ways to penetrate HMI and other OT network points than the people who operate them. AI and machine learning techniques are further empowering bad actors.

The statistics bear this out, especially as IT and OT networks continue to converge. In a study on 2023 OT/ICS cybersecurity activities, 76% of organizations were moving toward converged networks, and 97% reported IT security incidents also affected OT environments. Nearly half (47%) of businesses reported OT/ICS ransomware attacks, and 76% had significant concerns about state-sponsored actors.

On the positive side, however, pressure from regulators, insurance companies, and boards of directors is pushing organizations to think and act on cybersecurity for HMI points and throughout the network far more aggressively than many currently do. According to the study, 68% of organizations were increasing their budgets, 38% had dedicated OT security teams, and 77% had achieved a level-3 maturity in OT/ICS security.

Complete OT security

Cybersecurity in industrial environments presents challenges far different than those in IT networks. TXOne specializes in OT cybersecurity, with OT-native solutions designed for the equipment, environment, and day-to-day realities of industrial settings.

The post Enhancing HMI Security: How To Protect ICS Environments From Cyber Threats appeared first on Semiconductor Engineering.

❌