FreshRSS

Zobrazení pro čtení

Jsou dostupné nové články, klikněte pro obnovení stránky.

MIT researchers identify routes to stronger titanium alloys

Titanium alloys are essential structural materials for a wide variety of applications, from aerospace and energy infrastructure to biomedical equipment. But like most metals, optimizing their properties tends to involve a tradeoff between two key characteristics: strength and ductility. Stronger materials tend to be less deformable, and deformable materials tend to be mechanically weak.

Now, researchers at MIT, collaborating with researchers at ATI Specialty Materials, have discovered an approach for creating new titanium alloys that can exceed this historical tradeoff, leading to new alloys with exceptional combinations of strength and ductility, which might lead to new applications.

The findings are described in the journal Advanced Materials, in a paper by Shaolou Wei ScD ’22, Professor C. Cem Tasan, postdoc Kyung-Shik Kim, and John Foltz from ATI Inc. The improvements, the team says, arise from tailoring the chemical composition and the lattice structure of the alloy, while also adjusting the processing techniques used to produce the material at industrial scale.

Titanium alloys have been important because of their exceptional mechanical properties, corrosion resistance, and light weight when compared to steels for example. Through careful selection of the alloying elements and their relative proportions, and of the way the material is processed, “you can create various different structures, and this creates a big playground for you to get good property combinations, both for cryogenic and elevated temperatures,” Tasan says.

But that big assortment of possibilities in turn requires a way to guide the selections to produce a material that meets the specific needs of a particular application. The analysis and experimental results described in the new study provide that guidance.

The structure of titanium alloys, all the way down to atomic scale, governs their properties, Tasan explains. And in some titanium alloys, this structure is even more complex, made up of two different intermixed phases, known as the alpha and beta phases.

“The key strategy in this design approach is to take considerations of different scales,” he says. “One scale is the structure of individual crystal. For example, by choosing the alloying elements carefully, you can have a more ideal crystal structure of the alpha phase that enables particular deformation mechanisms. The other scale is the polycrystal scale, that involves interactions of the alpha and beta phases. So, the approach that’s followed here involves design considerations for both.”

In addition to choosing the right alloying materials and proportions, steps in the processing turned out to play an important role. A technique called cross-rolling is another key to achieving the exceptional combination of strength and ductility, the team found.

Working together with ATI researchers, the team tested a variety of alloys under a scanning electron microscope as they were being deformed, revealing details of how their microstructures respond to external mechanical load. They found that there was a particular set of parameters — of composition, proportions, and processing method — that yielded a structure where the alpha and beta phases shared the deformation uniformly, mitigating the cracking tendency that is likely to occur between the phases when they respond differently. “The phases deform in harmony,” Tasan says. This cooperative response to deformation can yield a superior material, they found.

“We looked at the structure of the material to understand these two phases and their morphologies, and we looked at their chemistries by carrying out local chemical analysis at the atomic scale. We adopted a wide variety of techniques to quantify various properties of the material across multiple length scales, says Tasan, who is the POSCO Professor of Materials Science and Engineering and an associate professor of metallurgy. “When we look at the overall properties” of the titanium alloys produced according to their system, “the properties are really much better than comparable alloys.”

This was industry-supported academic research aimed at proving design principles for alloys that can be commercially produced at scale, according to Tasan. “What we do in this collaboration is really toward a fundamental understanding of crystal plasticity,” he says. “We show that this design strategy is validated, and we show scientifically how it works,” he adds, noting that there remains significant room for further improvement.

As for potential applications of these findings, he says, “for any aerospace application where an improved combination of strength and ductility are useful, this kind of invention is providing new opportunities.”

The work was supported by ATI Specialty Rolled Products and used facilities of MIT.nano and the Center for Nanoscale Systems at Harvard University.

© Image: iStock

A new method for creating titanium alloys could lead to unprecedented combinations of strength and ductility.

MIT researchers identify routes to stronger titanium alloys

Titanium alloys are essential structural materials for a wide variety of applications, from aerospace and energy infrastructure to biomedical equipment. But like most metals, optimizing their properties tends to involve a tradeoff between two key characteristics: strength and ductility. Stronger materials tend to be less deformable, and deformable materials tend to be mechanically weak.

Now, researchers at MIT, collaborating with researchers at ATI Specialty Materials, have discovered an approach for creating new titanium alloys that can exceed this historical tradeoff, leading to new alloys with exceptional combinations of strength and ductility, which might lead to new applications.

The findings are described in the journal Advanced Materials, in a paper by Shaolou Wei ScD ’22, Professor C. Cem Tasan, postdoc Kyung-Shik Kim, and John Foltz from ATI Inc. The improvements, the team says, arise from tailoring the chemical composition and the lattice structure of the alloy, while also adjusting the processing techniques used to produce the material at industrial scale.

Titanium alloys have been important because of their exceptional mechanical properties, corrosion resistance, and light weight when compared to steels for example. Through careful selection of the alloying elements and their relative proportions, and of the way the material is processed, “you can create various different structures, and this creates a big playground for you to get good property combinations, both for cryogenic and elevated temperatures,” Tasan says.

But that big assortment of possibilities in turn requires a way to guide the selections to produce a material that meets the specific needs of a particular application. The analysis and experimental results described in the new study provide that guidance.

The structure of titanium alloys, all the way down to atomic scale, governs their properties, Tasan explains. And in some titanium alloys, this structure is even more complex, made up of two different intermixed phases, known as the alpha and beta phases.

“The key strategy in this design approach is to take considerations of different scales,” he says. “One scale is the structure of individual crystal. For example, by choosing the alloying elements carefully, you can have a more ideal crystal structure of the alpha phase that enables particular deformation mechanisms. The other scale is the polycrystal scale, that involves interactions of the alpha and beta phases. So, the approach that’s followed here involves design considerations for both.”

In addition to choosing the right alloying materials and proportions, steps in the processing turned out to play an important role. A technique called cross-rolling is another key to achieving the exceptional combination of strength and ductility, the team found.

Working together with ATI researchers, the team tested a variety of alloys under a scanning electron microscope as they were being deformed, revealing details of how their microstructures respond to external mechanical load. They found that there was a particular set of parameters — of composition, proportions, and processing method — that yielded a structure where the alpha and beta phases shared the deformation uniformly, mitigating the cracking tendency that is likely to occur between the phases when they respond differently. “The phases deform in harmony,” Tasan says. This cooperative response to deformation can yield a superior material, they found.

“We looked at the structure of the material to understand these two phases and their morphologies, and we looked at their chemistries by carrying out local chemical analysis at the atomic scale. We adopted a wide variety of techniques to quantify various properties of the material across multiple length scales, says Tasan, who is the POSCO Professor of Materials Science and Engineering and an associate professor of metallurgy. “When we look at the overall properties” of the titanium alloys produced according to their system, “the properties are really much better than comparable alloys.”

This was industry-supported academic research aimed at proving design principles for alloys that can be commercially produced at scale, according to Tasan. “What we do in this collaboration is really toward a fundamental understanding of crystal plasticity,” he says. “We show that this design strategy is validated, and we show scientifically how it works,” he adds, noting that there remains significant room for further improvement.

As for potential applications of these findings, he says, “for any aerospace application where an improved combination of strength and ductility are useful, this kind of invention is providing new opportunities.”

The work was supported by ATI Specialty Rolled Products and used facilities of MIT.nano and the Center for Nanoscale Systems at Harvard University.

© Image: iStock

A new method for creating titanium alloys could lead to unprecedented combinations of strength and ductility.

MIT researchers identify routes to stronger titanium alloys

Titanium alloys are essential structural materials for a wide variety of applications, from aerospace and energy infrastructure to biomedical equipment. But like most metals, optimizing their properties tends to involve a tradeoff between two key characteristics: strength and ductility. Stronger materials tend to be less deformable, and deformable materials tend to be mechanically weak.

Now, researchers at MIT, collaborating with researchers at ATI Specialty Materials, have discovered an approach for creating new titanium alloys that can exceed this historical tradeoff, leading to new alloys with exceptional combinations of strength and ductility, which might lead to new applications.

The findings are described in the journal Advanced Materials, in a paper by Shaolou Wei ScD ’22, Professor C. Cem Tasan, postdoc Kyung-Shik Kim, and John Foltz from ATI Inc. The improvements, the team says, arise from tailoring the chemical composition and the lattice structure of the alloy, while also adjusting the processing techniques used to produce the material at industrial scale.

Titanium alloys have been important because of their exceptional mechanical properties, corrosion resistance, and light weight when compared to steels for example. Through careful selection of the alloying elements and their relative proportions, and of the way the material is processed, “you can create various different structures, and this creates a big playground for you to get good property combinations, both for cryogenic and elevated temperatures,” Tasan says.

But that big assortment of possibilities in turn requires a way to guide the selections to produce a material that meets the specific needs of a particular application. The analysis and experimental results described in the new study provide that guidance.

The structure of titanium alloys, all the way down to atomic scale, governs their properties, Tasan explains. And in some titanium alloys, this structure is even more complex, made up of two different intermixed phases, known as the alpha and beta phases.

“The key strategy in this design approach is to take considerations of different scales,” he says. “One scale is the structure of individual crystal. For example, by choosing the alloying elements carefully, you can have a more ideal crystal structure of the alpha phase that enables particular deformation mechanisms. The other scale is the polycrystal scale, that involves interactions of the alpha and beta phases. So, the approach that’s followed here involves design considerations for both.”

In addition to choosing the right alloying materials and proportions, steps in the processing turned out to play an important role. A technique called cross-rolling is another key to achieving the exceptional combination of strength and ductility, the team found.

Working together with ATI researchers, the team tested a variety of alloys under a scanning electron microscope as they were being deformed, revealing details of how their microstructures respond to external mechanical load. They found that there was a particular set of parameters — of composition, proportions, and processing method — that yielded a structure where the alpha and beta phases shared the deformation uniformly, mitigating the cracking tendency that is likely to occur between the phases when they respond differently. “The phases deform in harmony,” Tasan says. This cooperative response to deformation can yield a superior material, they found.

“We looked at the structure of the material to understand these two phases and their morphologies, and we looked at their chemistries by carrying out local chemical analysis at the atomic scale. We adopted a wide variety of techniques to quantify various properties of the material across multiple length scales, says Tasan, who is the POSCO Professor of Materials Science and Engineering and an associate professor of metallurgy. “When we look at the overall properties” of the titanium alloys produced according to their system, “the properties are really much better than comparable alloys.”

This was industry-supported academic research aimed at proving design principles for alloys that can be commercially produced at scale, according to Tasan. “What we do in this collaboration is really toward a fundamental understanding of crystal plasticity,” he says. “We show that this design strategy is validated, and we show scientifically how it works,” he adds, noting that there remains significant room for further improvement.

As for potential applications of these findings, he says, “for any aerospace application where an improved combination of strength and ductility are useful, this kind of invention is providing new opportunities.”

The work was supported by ATI Specialty Rolled Products and used facilities of MIT.nano and the Center for Nanoscale Systems at Harvard University.

© Image: iStock

A new method for creating titanium alloys could lead to unprecedented combinations of strength and ductility.

Chip Industry Week In Review

Samsung and Synopsys collaborated on the first production tapeout of a high-performance mobile SoC design, including CPUs and GPUs, using the Synopsys.ai EDA suite on Samsung Foundry’s gate-all-around (GAA) process. Samsung plans to begin mass production of 2nm process GAA chips in 2025, reports BusinessKorea.

UMC developed the first radio frequency silicon on insulator (RF-SOI)-based 3D IC process for chips used in smartphones and other 5G/6G mobile devices. The process uses wafer-to-wafer bonding technology to address radio frequency interference between stacked dies and reduces die size by 45%.

Fig. 1: UMC’s 3D IC solution for RFSOI technology. Source: UMC

The first programmable chip capable of shaping, splitting, and steering beams of light is now being produced by Skywater Technology and Lumotive. The technology is critical for advancing lidar-based systems used in robotics, automotive, and other 3D sensing applications.

Driven by demand for AI chips, SK hynix revealed it has already booked its entire production of high-bandwidth memory chips for 2024 and is nearly sold out of its production capacity for 2025, reported the Korea Times, while SEMI reported that silicon wafer shipments declined in Q1 2024, quarter over quarter, a 13% drop, attributed to continued weakness in IC fab utilization and inventory adjustments.

PCI-SIG published the CopprLink Internal and External Cable specifications to provide PCIe 5.0 and 6.0 signaling at 32 and 64 GT/s and leverage standard connector form factors for applications including storage, data centers, AI/ML, and disaggregated memory.

The U.S. Department of Commerce (DoC) launched the CHIPS Women in Construction Framework to boost the participation of women and economically disadvantaged people in the workforce, aiming to support on-time and successful completion of CHIPS Act-funded projects. Intel and Micron adopted the framework.

Quick links to more news:

Market Reports
Global
In-Depth
Education and Training
Security
Product News
Quantum
Research
Events
Further Reading


Markets and Money

The SiC wafer processing equipment market is growing rapidly, reports Yole. SiC devices will exceed $10B by 2029 at a CAGR of 25%, and the SiC manufacturing tool market is projected to reach $5B by 2026.

imec.xpand launched a €300 million (~$321 million) fund that will invest in semiconductor and nanotechnology startups with the potential to push semiconductor innovation beyond traditional applications and drive next-gen technologies.

Blaize raised $106 million for its programmable graph streaming processor architecture suite and low-code/no-code software platform for edge AI.

Guerrilla RF completed the acquisition of Gallium Semiconductor‘s portfolio of GaN power amplifiers and front-end modules.

About 90% of connected cars sold in 2030 will have embedded 5G capability, reported Counterpoint. Also, about 75% of laptop PCs sold in 2027 will be AI laptop PCs with advanced generative AI, and the global high-level OS (HLOS) or advanced smartwatch market is predicted to grow 15% in 2024.


Global

Powerchip Semiconductor opened a new 300mm facility in northwestern Taiwan targeting the production of AI semiconductors. The facility is expected to produce 50,000 wafers per month at 55, 40, and 28nm nodes.

Taiwan-based KYEC Semiconductor will withdraw its China operations by the third quarter due to increasing geopolitical tensions, reports the South China Morning Post.

Japan will expand its semiconductor export restrictions to China related to four technologies: Scanning electron microscopes, CMOS, FD-SOI, and the outputs of quantum computers, according to TrendForce.

IBM will invest CAD$187 million (~US$137M in Canada’s semiconductor industry, with the bulk of the investment focused on advanced assembly, testing, and packaging operations.

Microsoft will invest US$2.2 billion over the next four years to build Malaysia’s digital infrastructure, create AI skilling opportunities, establish an AI Center of Excellence, and enhance cybersecurity.


In-Depth

New stories and tech talks published by Semiconductor Engineering this week:


Security

Infineon collaborated with ETAS to integrate the ESCRYPT CycurHSM 3.x automotive security software stack into its next-gen AURIX MCUs to optimize security, performance, and functionality.

Synopsys released Polaris Assist, an AI-powered application security assistant on its Polaris Software Integrity Platform, combining LLM technology with application security knowledge and intelligence.

In security research:

U.S. President Biden signed a National Security Memorandum to enhance the resilience of critical infrastructure, and the White House announced key actions taken since Biden’s AI Executive Order, including measures to mitigate risk.

CISA and partners published a fact sheet on pro-Russia hacktivists who seek to compromise industrial control systems and small-scale operational technology systems in North American and European critical infrastructure sectors. CISA issued other alerts including two Microsoft vulnerabilities.


Education and Training

The U.S. National Institute for Innovation and Technology (NIIT) and the Department of Labor (DoL) partnered to celebrate the inaugural Youth Apprenticeship Week on May 5 to 11, highlighting opportunities in critical industries such as semiconductors and advanced manufacturing.

SUNY Poly received an additional $4 million from New York State for its Semiconductor Processing to Packaging Research, Education, and Training Center.

The University of Pennsylvania launched an online Master of Science in Engineering in AI degree.

The American University of Armenia celebrated its 10-year collaboration with Siemens, which provides AUA’s Engineering Research Center with annual research grants.


Product News

Renesas and SEGGER Embedded Studio launched integrated code generator support for its 32-bit RISC-V MCU. 

Rambus introduced a family of DDR5 server Power Management ICs (PMICs), including an extreme current device for high-performance applications.

Fig. 2: Rambus’ server PMIC on DDR5 RDIMM. Source: Rambus

Keysight added capabilities to Inspector, part of the company’s recently acquired device security research and test lab Riscure, that are designed to test the robustness of post-quantum cryptography (PQC) and help device and chip vendors identify and fix hardware vulnerabilities. Keysight also validated new conformance test cases for narrowband IoT non-terrestrial networks standards.

Ansys’ RedHawk-SC and Totem power integrity platforms were certified for TSMC‘s N2 nanosheet-based process technology, while its RaptorX solution for on-chip electromagnetic modeling was certified for TSMC’s N5 process.

Netherlands-based athleisure brand PREMIUM INC selected CLEVR to implement Siemens’ Mendix Digital Lifecycle Management for Fashion & Retail solution.

Micron will begin shipping high-capacity DRAM for AI data centers.

Microchip uncorked radiation-tolerant SoC FPGAs for space applications that uses a real-time Linux-capable RISC-V-based microprocessor subsystem.


Quantum

University of Chicago researchers developed a system to boost the efficiency of quantum error correction using a framework based on quantum low-density party-check (qLDPC) codes and new hardware involving reconfigurable atom arrays.

PsiQuantum will receive AUD $940 million (~$620 million) in equity, grants, and loans from the Australian and Queensland governments to deploy a utility-scale quantum computer in the regime of 1 million physical qubits in Brisbane, Australia.

Japan-based RIKEN will co-locate IBM’s Quantum System Two with its Fugaku supercomputer for integrated quantum-classical workflows in a heterogeneous quantum-HPC hybrid computing environment. Fugaku is currently one of the world’s most powerful supercomputers.

QuEra Computing was awarded a ¥6.5 billion (~$41 million) contract by Japan’s National Institute of Advanced Industrial Science and Technology (AIST) to deliver a gate-based neutral-atom quantum computer alongside AIST’s ABCI-Q supercomputer as part of a quantum-classical computing platform.

Novo Holdings, the controlling stakeholder of pharmaceutical company Novo Nordisk, plans to boost the quantum technology startup ecosystem in Denmark with DKK 1.4 billion (~$201 million) in investments.

The University of Sydney received AUD $18.4 million (~$12 million) from the Australian government to help grow the quantum industry and ecosystem.

The European Commission plans to spend €112 million (~$120 million) to support AI and quantum research and innovation.


Research

Intel researchers developed a 300-millimeter cryogenic probing process to collect high-volume data on the performance of silicon spin qubit devices across whole wafers using CMOS manufacturing techniques.

EPFL researchers used a form of ML called deep reinforcement learning (DRL) to train a four-legged robot to avoid falls by switching between walking, trotting, and pronking.=

The University of Cambridge researchers developed tiny, flexible nerve cuff devices that can wrap around individual nerve fibers without damaging them, useful to treat a range of neurological disorders.

Argonne National Laboratory and Toyota are exploring a direct recycling approach that carefully extracts components from spent batteries. Argonne is also working with Talon Metals on a process that could increase the number of EV batteries produced from mined nickel ore.


Events

Find upcoming chip industry events here, including:

Event Date Location
IEEE International Symposium on Hardware Oriented Security and Trust (HOST) May 6 – 9 Washington DC
MRS Spring Meeting & Exhibit May 7 – 9 Virtual
ASMC: Advanced Semiconductor Manufacturing Conference May 13 – 16 Albany, NY
ISES Taiwan 2024: International Semiconductor Executive Summit May 14 – 15 New Taipei City
Ansys Simulation World 2024 May 14 – 16 Online
NI Connect Austin 2024 May 20 – 22 Austin, Texas
ITF World 2024 (imec) May 21 – 22 Antwerp, Belgium
Embedded Vision Summit May 21 – 23 Santa Clara, CA
ASIP Virtual Seminar 2024 May 22 Online
Electronic Components and Technology Conference (ECTC) 2024 May 28 – 31 Denver, Colorado
Hardwear.io Security Trainings and Conference USA 2024 May 28 – Jun 1 Santa Clara, CA
Find All Upcoming Events Here

Upcoming webinars are here.


Further Reading

Read the latest special reports and top stories, or check out the latest newsletters:

Systems and Design
Low Power-High Performance
Test, Measurement and Analytics
Manufacturing, Packaging and Materials
Automotive, Security and Pervasive Computing

The post Chip Industry Week In Review appeared first on Semiconductor Engineering.

❌