FreshRSS

Zobrazení pro čtení

Jsou dostupné nové články, klikněte pro obnovení stránky.

AI-Powered Data Analytics To Revolutionize The Semiconductor Industry

In the age where data reigns supreme, the semiconductor industry stands on the cusp of revolutionary change, redefining complexity and productivity through a lens crafted by artificial intelligence (AI). The intersection of AI and the semiconductor industry is not merely an emerging trend—it is the fulcrum upon which the next generation of technological innovation balances. Semiconductor companies are facing a critical juncture where the burgeoning complexity of chip designs is outpacing the growth of skilled human resources. This is where the infusion of AI-powered data analytics catalyzes a seismic shift in the industry’s approach to efficiency and productivity.

AI in semiconductor design: A revolution beckons

With technological leaps like 5G, AI, and autonomous vehicles driving chip demand, the status quo for semiconductor design is no longer sustainable. Traditional design methodologies fall short in addressing the challenges presented by these new technologies, and the need for a new approach is non-negotiable. AI, with its capacity to process massive datasets and learn from patterns, offers a revolutionary solution. Gathered with vast amounts of electronic design automation (EDA) data, machine learning algorithms can pave an efficient path through design complexities.

Navigating the complexity of EDA data with AI

The core of semiconductor design lies in the complexity of EDA data, which is often disparate, unstructured, and immensely intricate, existing in various formats ranging from simple text to sophisticated binary machine-readable data. AI presents a beacon of hope in taming this beast by enabling the industry to store, process, and analyze data with unprecedented efficiency.

AI-enabled data analytics offer a path through the labyrinth of EDA complexity, providing a scalable and sophisticated data storage and processing solution. By harnessing AI’s capabilities, the semiconductor industry can dissect, organize, and distill data into actionable insights, elevating the efficacy of chip design processes.

Leveraging AI in design excellence

Informed decisions are the cornerstone of successful chip design, and the fusion of AI-driven analytics with semiconductor engineering marks a watershed moment in the industry. AI’s ability to comprehend and process unstructured data at scale enables a deeper understanding of design challenges, yielding solutions that optimize SoCs’ power, performance, and area (PPA).

AI models, fed by fragmented data points from EDA compilation, can predict bottlenecks, performance constraints, or power inefficiencies before they impede the design process. This foresight empowers engineers with informed design decisions, fostering an efficient and anticipatory design culture.

Reimagining engineering team efficiency

One of the most significant roadblocks in the semiconductor industry has been aligning designer resources with the exponential growth of chip demand. As designs become complex, they evolve into multifaceted systems on chips (SoCs) housing myriad hierarchical blocks that accumulate vast amounts of data throughout the iterative development cycle. When harnessed effectively, this data possesses untapped potential to elevate the efficiency of engineering teams.

Consolidating data review into a systematic, knowledge-driven process paves the way for accelerated design closure and seamless knowledge transfer between projects. This refined approach can significantly enhance the productivity of engineering teams, a crucial factor if the semiconductor industry is to meet the burgeoning chip demand without exponentially expanding design teams.

Ensuring a systemic AI integration

For the full potential of AI to be realized, a systemic integration across the semiconductor ecosystem is paramount. This integration spans the collection and storage of data and the development of AI models attuned to the industry’s specific needs. Robust AI infrastructure, equipped to handle the diverse data formats, is the cornerstone of this integration. AI models must complement it and be fine-tuned to the peculiarities of semiconductor design, ensuring that the insights they produce are accurate and actionable.

Cultivating AI competencies within engineering teams

As AI plays a central role in the semiconductor industry, it highlights the need for AI competencies within engineering teams. Upskilling the workforce to leverage AI tools and platforms is a critical step toward a harmonized AI ecosystem. This journey toward proficiency entails familiarization with AI concepts and a collaborative approach that blends domain expertise with AI acumen. Engineering teams adept at harnessing AI can unlock its full potential and become pioneers of innovation in the semiconductor landscape.

Intelligent system design

At Cadence, the conception of technological ecosystems is encapsulated within a framework of three concentric circles—a model neatly epitomized by the sophistication of an electric vehicle. The first circle represents the data used by the car; the second circle represents the physical car, including the mechanical, electrical, hardware, and software components. The third circle represents the silicon that powers the entire system.

The Cadence.AI Platform operates at the vanguard of pervasive intelligence, harnessing data and AI-driven analytics to propel system and silicon design to unprecedented levels of excellence. By deploying Cadence.AI, we converge our computational software innovations, from Cadence’s Verisium AI-Driven Verification Platform to the Cadence Cerebrus Intelligent Chip Explorer’s AI-driven implementation.

The AI-driven future of semiconductor innovation

The implications are far-reaching as the semiconductor industry charts its course into an AI-driven era. AI promises to redefine design efficiency, expedite time to market, and pioneer new frontiers in chip innovation. The path forward demands a concerted effort to integrate AI seamlessly into the semiconductor fabric, cultivating an ecosystem primed for the challenges and opportunities ahead.

Semiconductor firms that champion AI adoption will set the standard for the industry’s evolution, carving a niche for themselves as pioneers of a new chip design and production paradigm. The future of semiconductor innovation is undoubtedly AI, and the time to embrace this transformative force is now.

Cadence is already at the forefront of this AI-led revolution. Our Cadence.AI Platform is a testament to AI’s power in redefining systems and silicon design. By enabling the concurrent creation of multiple designs, optimizing team productivity, and pioneering leaner design approaches, Cadence.AI illustrates the true potential of AI in semiconductor innovation.

The harmonized suite of our AI tools equips our customers with the ability to employ AI-driven optimization and debugging, facilitating the concurrent creation of multiple designs while optimizing the productivity of engineering teams. It empowers a leaner workforce to achieve more, elevating their capability to generate a spectrum of designs in parallel with unmatched efficiency and precision, resulting in a new frontier in design excellence, where AI acts as a co-pilot to the engineering team, steering the way to unparalleled chip performance. Learn more about the power of AI to forge intelligent designs.

The post AI-Powered Data Analytics To Revolutionize The Semiconductor Industry appeared first on Semiconductor Engineering.

How AI Will Change Chip Design



The end of Moore’s Law is looming. Engineers and designers can do only so much to miniaturize transistors and pack as many of them as possible into chips. So they’re turning to other approaches to chip design, incorporating technologies like AI into the process.

Samsung, for instance, is adding AI to its memory chips to enable processing in memory, thereby saving energy and speeding up machine learning. Speaking of speed, Google’s TPU V4 AI chip has doubled its processing power compared with that of its previous version.

But AI holds still more promise and potential for the semiconductor industry. To better understand how AI is set to revolutionize chip design, we spoke with Heather Gorr, senior product manager for MathWorks’ MATLAB platform.

How is AI currently being used to design the next generation of chips?

Heather Gorr: AI is such an important technology because it’s involved in most parts of the cycle, including the design and manufacturing process. There’s a lot of important applications here, even in the general process engineering where we want to optimize things. I think defect detection is a big one at all phases of the process, especially in manufacturing. But even thinking ahead in the design process, [AI now plays a significant role] when you’re designing the light and the sensors and all the different components. There’s a lot of anomaly detection and fault mitigation that you really want to consider.

Portrait of a woman with blonde-red hair smiling at the camera Heather GorrMathWorks

Then, thinking about the logistical modeling that you see in any industry, there is always planned downtime that you want to mitigate; but you also end up having unplanned downtime. So, looking back at that historical data of when you’ve had those moments where maybe it took a bit longer than expected to manufacture something, you can take a look at all of that data and use AI to try to identify the proximate cause or to see something that might jump out even in the processing and design phases. We think of AI oftentimes as a predictive tool, or as a robot doing something, but a lot of times you get a lot of insight from the data through AI.

What are the benefits of using AI for chip design?

Gorr: Historically, we’ve seen a lot of physics-based modeling, which is a very intensive process. We want to do a reduced order model, where instead of solving such a computationally expensive and extensive model, we can do something a little cheaper. You could create a surrogate model, so to speak, of that physics-based model, use the data, and then do your parameter sweeps, your optimizations, your Monte Carlo simulations using the surrogate model. That takes a lot less time computationally than solving the physics-based equations directly. So, we’re seeing that benefit in many ways, including the efficiency and economy that are the results of iterating quickly on the experiments and the simulations that will really help in the design.

So it’s like having a digital twin in a sense?

Gorr: Exactly. That’s pretty much what people are doing, where you have the physical system model and the experimental data. Then, in conjunction, you have this other model that you could tweak and tune and try different parameters and experiments that let sweep through all of those different situations and come up with a better design in the end.

So, it’s going to be more efficient and, as you said, cheaper?

Gorr: Yeah, definitely. Especially in the experimentation and design phases, where you’re trying different things. That’s obviously going to yield dramatic cost savings if you’re actually manufacturing and producing [the chips]. You want to simulate, test, experiment as much as possible without making something using the actual process engineering.

We’ve talked about the benefits. How about the drawbacks?

Gorr: The [AI-based experimental models] tend to not be as accurate as physics-based models. Of course, that’s why you do many simulations and parameter sweeps. But that’s also the benefit of having that digital twin, where you can keep that in mind—it’s not going to be as accurate as that precise model that we’ve developed over the years.

Both chip design and manufacturing are system intensive; you have to consider every little part. And that can be really challenging. It’s a case where you might have models to predict something and different parts of it, but you still need to bring it all together.

One of the other things to think about too is that you need the data to build the models. You have to incorporate data from all sorts of different sensors and different sorts of teams, and so that heightens the challenge.

How can engineers use AI to better prepare and extract insights from hardware or sensor data?

Gorr: We always think about using AI to predict something or do some robot task, but you can use AI to come up with patterns and pick out things you might not have noticed before on your own. People will use AI when they have high-frequency data coming from many different sensors, and a lot of times it’s useful to explore the frequency domain and things like data synchronization or resampling. Those can be really challenging if you’re not sure where to start.

One of the things I would say is, use the tools that are available. There’s a vast community of people working on these things, and you can find lots of examples [of applications and techniques] on GitHub or MATLAB Central, where people have shared nice examples, even little apps they’ve created. I think many of us are buried in data and just not sure what to do with it, so definitely take advantage of what’s already out there in the community. You can explore and see what makes sense to you, and bring in that balance of domain knowledge and the insight you get from the tools and AI.

What should engineers and designers consider when using AI for chip design?

Gorr: Think through what problems you’re trying to solve or what insights you might hope to find, and try to be clear about that. Consider all of the different components, and document and test each of those different parts. Consider all of the people involved, and explain and hand off in a way that is sensible for the whole team.

How do you think AI will affect chip designers’ jobs?

Gorr: It’s going to free up a lot of human capital for more advanced tasks. We can use AI to reduce waste, to optimize the materials, to optimize the design, but then you still have that human involved whenever it comes to decision-making. I think it’s a great example of people and technology working hand in hand. It’s also an industry where all people involved—even on the manufacturing floor—need to have some level of understanding of what’s happening, so this is a great industry for advancing AI because of how we test things and how we think about them before we put them on the chip.

How do you envision the future of AI and chip design?

Gorr: It’s very much dependent on that human element—involving people in the process and having that interpretable model. We can do many things with the mathematical minutiae of modeling, but it comes down to how people are using it, how everybody in the process is understanding and applying it. Communication and involvement of people of all skill levels in the process are going to be really important. We’re going to see less of those superprecise predictions and more transparency of information, sharing, and that digital twin—not only using AI but also using our human knowledge and all of the work that many people have done over the years.

❌