It’s a pretty sure bet that you couldn’t get through a typical day without the direct support of dozens of electric motors. They’re in all of your appliances not powered by a hand crank, in the climate-control systems that keep you comfortable, and in the pumps, fans, and window controls of your car. And although there are many different kinds of electric motors, every single one of them, from the 200-kilowatt traction motor in your electric vehicle to the stepper motor in your quartz wristwatch, exploits the exact same physical phenomenon: electromagnetism.
For decades, however, engineers have been tantalized by the virtues of motors based on an entirely different principle: electrostatics. In some applications, these motors could offer an overall boost in efficiency ranging from 30 percent to close to 100 percent, according to experiment-based analysis. And, perhaps even better, they would use only cheap, plentiful materials, rather than the rare-earth elements, special steel alloys, and copious quantities of copper found in conventional motors.
“Electrification has its sustainability challenges,” notes Daniel Ludois, a professor of electrical engineering at the University of Wisconsin in Madison. But “an electrostatic motor doesn’t need windings, doesn’t need magnets, and it doesn’t need any of the critical materials that a conventional machine needs.”
Such advantages prompted Ludois to cofound a company, C-Motive Technologies, to build macro-scale electrostatic motors. “We make our machines out of aluminum and plastic or fiberglass,” he says. Their current prototype is capable of delivering torque as high as 18 newton meters and power at 360 watts (0.5 horsepower)—characteristics they claim are “the highest torque and power measurements for any rotating electrostatic machine.”
The results are reported in a paper, “Synchronous Electrostatic Machines for Direct Drive Industrial Applications,” to be presented at the 2024 IEEE Energy Conversion Congress and Exposition, which will be held from 20 to 24 October in Phoenix, Ariz. In the paper, Ludois and four colleagues describe an electrostatic machine they built, which they describe as the first such machine capable of “driving a load performing industrial work, in this case, a constant-pressure pump system.”
Making Electrostatic Motors Bigger
The machine, which is hundreds of times more powerful than any previous electrostatic motor, is “competitive with or superior to air-cooled magnetic machinery at the fractional [horsepower] scale,” the authors add. The global market for fractional horsepower motors is more than US $8.7 billion, according to consultancy Business Research Insights.
C-Motive’s 360-watt motor has a half dozen each of rotors and stators, shown in yellow in this cutaway illustration.C-Motive Technologies
Achieving macro scale wasn’t easy. Electrostatic motors have been available for years, but today, these are tiny units with power output measured in milliwatts. “Electrostatic motors are amazing once you get below about the millimeter scale, and they get better and better as they get smaller and smaller,” says Philip Krein, a professor of electrical engineering at the University of Illinois Urbana-Champaign. “There’s a crossover at which they are better than magnetic motors.” (Krein does not have any financial connection to C-Motive.)
For larger motors, however, the opposite is true. “At macro scale, electromagnetism wins, is the textbook answer,” notes Ludois. “Well, we’ve decided to challenge that wisdom.”
For this quest he and his team found inspiration in a lesser-known accomplishment of one of the United States’ founding fathers. “The fact is that Benjamin Franklin built and demonstrated a macroscopic electrostatic motor in 1747,” says Krein. “He actually used the motor as a rotisserie to grill a turkey on a riverbank in Philadelphia” (a fact unearthed by the late historian I. Bernard Cohen for his 1990 book Benjamin Franklin’s Science ).
Krein explains that the fundamental challenge in attempting to scale electrostatic motors to the macro world is energy density. “The energy density you can get in air at a reasonable scale with an electric-field system is much, much lower—many orders of magnitude lower—than the density you can get with an electromagnetic system.” Here the phrase “in air” refers to the volume within the motor, called the “air gap,” where the machine’s fields (magnetic for the conventional motor, electric for the electrostatic one) are deployed. It straddles the machine’s key components: the rotor and the stator.
Let’s unpack that. A conventional electric motor works because a rotating magnetic field, set up in a fixed structure called a stator, engages with the magnetic field of another structure called a rotor, causing that rotor to spin. The force involved is called the Lorentz force. But what makes an electrostatic machine go ‘round is an entirely different force, called the Coulomb force. This is the attractive or repulsive physical force between opposite or like electrical charges.
Overcoming the Air Gap Problem
C-Motive’s motor uses nonconductive rotor and stator disks on which have been deposited many thin, closely spaced conductors radiating outward from the disk’s center, like spokes in a bicycle wheel. Precisely timed electrostatic charges applied to these “spokes” create two waves of voltage, one in the stator and another in the rotor. The phase difference between the rotor and stator waves is timed and controlled to maximize the torque in the rotor caused by this sequence of attraction and repulsion among the spokes. To further wring as much torque as possible, the machine has half a dozen each of rotors and stators, alternating and stacked like compact discs on a spindle.
The 360-watt motor is hundreds of times more powerful than previous electrostatic motors, which have power output generally measured in milliwatts.C-Motive Technologies
The machine would be feeble if the dielectric between the charges was air. As a dielectric, air has low permittivity, meaning that an electric field in air can not store much energy. Air also has a relatively low breakdown field strength, meaning that air can support only a fairly weak electric field before it breaks down and conducts current in a blazing arc. So one of the team’s greatest challenges was producing a dielectric fluid that has a much higher permittivity and breakdown field strength than air, and that was also environmentally friendly and nontoxic. To minimize friction, this fluid also had to have very low viscosity, because the rotors would be spinning in it. A dielectric with high permittivity concentrates the electric field between oppositely charged electrodes, enabling greater energy to be stored in the space between them. After screening hundreds of candidates over several years, the C-Motive team succeeded in producing an organic liquid dielectric with low viscosity and a relative permittivity in the low 20s. For comparison, the relative permittivity of air is 1.
Another challenge was supplying the 2,000 volts their machine needs to operate. High voltages are necessary to create the intense electric fields between the rotors and stators. To precisely control these fields, C-Motive was able to take advantage of the availability of inexpensive and stupendously capable power electronics, according to Ludois. For their most recent motor, they developed a drive system based on readily available 4.5-kilovolt insulated-gate bipolar transistors, but the rate of advancement in power semiconductors means they have many attractive choices here, and will have even more in the near future.
Ludois reports that C-Motive is now testing a 750-watt (1 hp) motor in applications with potential customers. Their next machines will be in the range of 750 to 3,750 watts (1 to 5 hp), he adds. These will be powerful enough for an expanded range of applications in industrial automation, manufacturing, and heating, ventilating, and air conditioning.
It’s been a gratifying ride for Ludois. “For me, a point of creative pride is that my team and I are working on something radically different that, I hope, over the long term, will open up other avenues for other folks to contribute.”
A French cycling official confronts a rider suspected of doping and ends up jumping onto the hood of a van making a high-speed getaway. This isn’t a tragicomedy starring Gérard Depardieu, sending up the sport’s well-earned reputation for cheating. This scenario played out in May at the Routes de l’Oise cycling competition near Paris, and the van was believed to contain evidence of a distinctly 21st-century cheat: a hidden electric motor.
Cyclists call it “motor doping.” At the Paris Olympics opening on Friday, officials will be deploying electromagnetic scanners and X-ray imaging to combat it, as cyclists race for gold in and around the French capital. The officials’ prey can be quite small: Cycling experts say just 20 or 30 watts of extra power is enough to tilt the field and clinch a race.
Motor doping has been confirmed only once in professional cycling, way back in 2016. And the sport’s governing body, the Union Cycliste Internationale (UCI), has since introduced increasingly sophisticated motor-detection methods. But illicit motors remain a scourge at high-profile amateur events like the Routes de l’Oise. Some top professionals, past and present, continue to raise an alarm.
“It’s 10 years now that we’re speaking about this…. If you want to settle this issue you have to invest.” —Jean-Christophe Péraud, former Union Cycliste Internationale official
Riders and experts reached by IEEE Spectrum say it’s unlikely that technological doping still exists at the professional level. “I’m confident it’s not happening any more. I think as soon as we began to speak about it, it stopped. Because at a high level it’s too dangerous for a team and an athlete,” says Jean-Christophe Péraud, an Olympic silver medalist who was UCI’s first Manager of Equipment and the Fight against Technological Fraud.
Many—including Péraud—say more vigilance is needed. The solution may be next-generation detection tech: onboard scanners that provide continuous assurance that human muscle alone is powering the sport’s dramatic sprints and climbs.
How Officials Have Hunted for Motor Doping in Cycling
Rumors of hidden motors first swirled into the mainstream in 2010 after a Swiss cyclist clinched several European events with stunning accelerations. At the time the UCI lacked means of detecting concealed motors, and its technical director promised to “speed up” work on a “quick and efficient way” to do so.
The UCI began with infrared cameras, but they are useless for pre- and post-race checks when a hidden motor is cold. Not until 2015, amidst further motor doping rumors and allegations of UCI inaction, did the organization begin beta testing a better tool: an iPad-based “magnetometric tablet” scanner.
According to the UCI, an adapter plugged into one of these tablet scanners creates an ambient magnetic field. Then, a magnetometer and custom software register disruptions to the field that may indicate the presence of metal or magnets in and around a bike’s carbon-fiber frame.
UCI’s tablets delivered in their debut appearance, at the 2016 Cyclocross World Championships held that year in Belgium. Scans of bikes at the rugged event—a blend of road and mountain biking—flagged a bike bearing the name of local favorite Femke Van den Driessche. Closer inspection revealed a motor and battery lodged within the hollow frame element that angles down from a bike’s saddle to its pedals, and wires connecting the seat tube’s hidden hardware to a push-button switch under the handlebars.
In 2016, a concealed motor was found in a bike bearing Belgian cyclist Femke Van Den Driessche’s name at the world cyclo-cross championships. (Van Den Driessche is shown here with a different bike.)AFP/Getty Images
Van den Driessche, banned from competition for six years, withdrew from racing while maintaining her innocence. (Giovambattista Lera, the amateur cyclist implicated earlier this year in France, also denies using electric assistance in competition.)
The motor in Van den Driessche’s bike engaged with the bike’s crankshaft and added 200 W of power. The equipment’s Austrian manufacturer, Vivax Drive, is now defunct. But anyone with cash to spare can experience 200 W of extra push via a racer equipped by Monaco-based HPS-Bike, such as the HPS-equipped Lotus Type 136 racing bike from U.K. sports car producer Lotus Group, which starts at £15,199 (US $19,715).
HPS founder & CEO Harry Gibbings says the company seeks to empower weekend riders who don’t want to struggle up steep hills or who need an extra boost here and there to keep up with the pack. Gibbings says the technology is not available for retrofits, and is thus off limits to would-be cheats. Still, the HPS Watt Assist system shows the outer bounds of what’s possible in discreet high-performance electric assist.
The 30-millimeter-diameter, 300-gram motor, is manufactured by Swiss motor maker Maxon Group, and Gibbings says it uses essentially the same power-dense brushless design that’s propelling NASA’s Perseverance rover on Mars. HPS builds the motor into a bike’s downtube, the frame element angling up from a bike’s crank toward its handlebars.
Notwithstanding persistent media speculation about electric motors built into rear hubs or solid wheels, Gibbings says only a motor placed in a frame’s tubes can add power without jeopardizing the look, feel, and performance of a racing bike.
UCI’s New Techniques to Spot Cheating in Cycling
Professional cycling got its most sophisticated detection systems in 2018, after criticism of UCI motor-doping policies helped fuel a change of leadership. Incoming President David Lappartient appointed Péraud to push detection to new levels, and five months later UCI announced its first X-ray equipment at a press conference in Geneva.
Unlike the tablet scanners, which yield many false positives and require dismantling of suspect bikes, X-ray imaging is definitive. The detector is built into a shielded container and driven to events.
UCI told the cycling press that its X-ray cabinet would “remove any suspicion regarding race results.” And it says it maintains a high level of testing, with close to 1,000 motor-doping checks at last year’s Tour de France.
UCI declined to speak with IEEE Spectrum about its motor-detection program, including plans for the Paris Olympics. But it appears to have stepped up vigilance. Lappartient recently acknowledged that UCI’s controls are “not 100 percent secure” and announced a reward for whistleblowers who deliver evidence of motor fraud. In May, UCI once again appointed a motor-doping czar—a first since Péraud departed amidst budget cuts in 2020. Among other duties, former U.S. Department of Homeland Security criminal investigator Nicholas Raudenski is tasked with “development of new methods to detect technological fraud.”
Unlike the tablet scanners, X-ray imaging is definitive.
Péraud is convinced that only real-time monitoring of bikes throughout major races can prove that motor fraud is in the past, since big races provide ample opportunities to sneak in an additional bike and thus evade UCI’s current tools.
UCI has already laid the groundwork for such live monitoring, partnering with France’s Alternative Energies and Atomic Energy Commission (Commissariat à l’énergie atomique et aux énergies alternatives, or CEA) to capitalize on the national lab’s deep magnetometry expertise. UCI disclosed some details at its 2018 Geneva press conference, where a CEA official presented its concept: an embedded, high-resolution magnetometer to detect a hidden motor’s electromagnetic signature and wirelessly alert officials via receivers on race support vehicles.
As of June 2018, CEA researchers in Grenoble had identified an appropriate magnetometer and were evaluating the electromagnetic noise that could challenge the system—“from rotating wheels and pedals to passing motorcycles and cars.”
Mounting detectors on every bike would not be cheap, but Péraud says he is convinced that cycling needs it: “It’s 10 years now that we’re speaking about this…. If you want to settle this issue you have to invest.”
SK hynix and TSMC plan to collaborate on HBM4 development and next-generation packaging technology, with plans to mass produce HBM4 chips in 2026. The agreement is an early indicator for just how competitive, and potentially lucrative, the HBM market is becoming. SK hynix said the collaboration will enable breakthroughs in memory performance with increased density of the memory controller at the base of the HBM stack.
Intel assembled the industry’s first high-NA EUV lithography system. “Compared to 0.33NA EUV, high-NA EUV (or 0.55NA EUV) can deliver higher imaging contrast for similar features, which enables less light per exposure, thereby reducing the time required to print each layer and increasing wafer output,” Intel said.
Fig. 1: Bigger iron — Intel’s brand new high-NA EUV machinery. Source: Intel
Samsung is slated to receive $6.4 billion in CHIPS ACT funding from the U.S. Department of Commerce (DoC) as part of a $40 billion expansion of its Austin, Texas, manufacturing facility, along with an R&D fab, a pair of leading-edge logic fabs, and an advanced packaging plant in nearby Taylor, Texas.
Micron and the U.S. government next week will announce $6.1 billion in CHIPS Act funding for the development of advanced memory chips in New York and Idaho, according to AP News.
Cadenceunveiled its Palladium Z3 Emulation and Protium X3 FPGA Prototyping systems, targeted at multi-billion-gate designs with 2X increase in capacity and a 1.5X performance increase compared to previous-generation systems. Cadence also teamed up with MemVerge to enable seamless support for AWS Spot instances for long-running high-memory EDA jobs, and extended its hybrid cloud environment solutions through a collaboration with NetApp.
Fig. 2: At CadenceLive Silicon Valley, NVIDIA CEO Jensen Huang (r.) discussed accelerated computing and generative AI with Cadence CEO Anirudh Devgan. Source: Semiconductor Engineering
After Taiwan’s recent 7.2 magnitude earthquake, TSMC reached more the 70% tool recovery in its fabs within the first 10 hours and full recovery by the end of the third day, according to this week’s earnings call. Some wafers in process were scrapped but the company expects the lost production to be recovered in the second quarter. Also in the call, TSMC said they expect their “customers to share some of the higher cost” of the overseas fabs and higher electricity costs.
Advantest‘s regional headquarters in Taiwandonated $2.2 million New Taiwan dollars ($680,000 US) for aid to victims and reconstruction efforts related to the Taiwan earthquake that struck on April 3.
Japan’s exports grew by more than 7% YoY in March, driven by an 11.3% increase in shipments of electronics and semiconductor manufacturing equipment, much of it to China, according to NikkeiAsia.
China‘s IC output grew 40% in the first quarter, primarily driven by EVs and smartphones, according to the South China Morning Post.
In the U.S., the Biden Administration released a notice of funding opportunity of $50 million targeted at small businesses pursuing advances in metrology research and technology. Also, the U.S. Department of Energy announced a $33 million funding opportunity for smart manufacturing technologies.
Germany‘s Fraunhofer IIS launched its On-Board Processor (FOBP) for the German Space Agency’s Heinrich Hertz communication satellite. FOBP can be controlled and reprogrammed from Earth and will be used to investigate creation of hybrid communication networks.
Markets and Money
RISC-V startup Rivosraised more than $250 million in capital investments to tape out its first power-optimized chips for data analytics and generative AI applications.
Silvacofiled to go public on Nasdaq. The company also received a $5 million convertible note investment from Microchip.
Microchip acquiredNeuronix AI Labs to provide AI-enabled FPGA solutions for large-scale, high-performance edge applications.
The advanced packaging market saw a modest 4% increase in revenues in Q4 2023 versus the previous quarter, with a projected decline of 13% QoQ in the first quarter of 2024, reports Yole. Overall, the market is expected to increase from $38 billion in 2023 to $69.5 billion in 2029 with a CAGR of 10.7%.
TSMC’s CoWoS total capacity will increase by 150% in 2024 due to demand for NVIDIA’s Blackwell Platform, reports TrendForce.
ASML saw a nearly 40% drop in new litho equipment sales QoQ in Q1 2024 and a 61% drop in net bookings as manufacturers reduced investments in new capital equipment during the recent semiconductor market slump.
Global PC shipments rose about 3% YoY in Q1 2024, and that same growth is expected for full year 2024, reports Counterpoint. Manufacturers are predicted to promote AI PCs as semiconductor companies prepare to launch SoCs featuring higher TOPS.
The GenAI smartphone market share is predicted to reach 11% by 2024 and 43% by 2027, reports Counterpoint. Samsung likely will lead in 2024, but Apple may overtake it in 2025.
The RF GaN market is expected to exceed $2 billion by 2029, fueled by the defense and telecom infrastructure sectors, reports Yole.
Seoul National University, Sandia National Laboratories, Texas A&M University, and Applied Materials demonstrated a memristor crossbar architecture for encryption and decryption.
Robert Bosch, Forschungszentrum Julich, and Newcastle University investigated techniques for error detection and correction in in-memory computing.
The University of Florida introduced an automated framework that can help identify security assets for a design at the register-transfer level (RTL).
DARPA conducted successful in-air tests of AI flying an F-16 autonomously versus a human-piloted F-16 in visual-range combat scenarios.
The National Security Agency’s Artificial Intelligence Security Center (NSA AISC) published joint guidance on deploying AI systems securely with the Cybersecurity and Infrastructure Security Agency (CISA), the Federal Bureau of Investigation (FBI), and international partners. CISA also issued other alerts.
Products and Standards
Samsunguncorked LPDDR5X DRAM built on a 12nm process that supports up to 10.7 Gbps and expands the single package capacity of mobile DRAM up to 32 GB.
Keysightrevealed its next-generation RF circuit simulation tool that supports multi-physics co-design of circuit, electromagnetic, and electrothermal simulations across Cadence, Synopsys, and Keysight platforms.
Renesas released its FemtoClock family of ultra-low jitter clock generators and jitter attenuators with 8 and 12 outputs, enabling clock tree designs for high-speed interconnect systems in telecom and data center switches, routers, medical imaging, and more.
Movellusexpanded its droop response solutions with Aeonic Generate AWM3, which responds to voltage droops within 1 to 2 clock cycles while providing enhanced observability for droop profiling and enabling fine-grained dynamic frequency scaling.
Efablessannounced the second version of its Python-based open-source EDA software for construction of customizable flows using proprietary or open-source tools.
Faraday TechnologylicensedArm’s Cortex-A720AE IP to use in the development of AI-enabled vehicle ASICs. Also, Untether AIteamed up with Arm to enable its inference acceleration technology to be implemented alongside the latest-generation Automotive Enhanced technology from Arm for ADAS and autonomous vehicle applications.
FOXESS used Infineon’s 1,200V CoolSiC MOSFETs and EiceDRIVER gate drivers for industrial energy storage applications, aiming to promote green energy.
Emotors adopted Siemens’ Simcenter solutions for NVH testing of next-gen automotive e-drives.
SiTimedebuted a family of clock generators for AI datacenter applications with clock, oscillator, and resonator in an integrated chip.
JEDECpublished the JESD79-5C DDR5 SDRAM standard, which includes a DRAM data integrity improvement called Per-Row Activation Counting (PRAC) that precisely counts DRAM activations on a wordline granularity and alerts the system to pause traffic and designate time for mitigation measures when an excessive number of activations are detected.
The LoRa Alliance launched its roadmap for the development of the LoRaWAN open standard for IoT communications, referring to long-range radio (LoRa) low-power wide-area networks (LPWANs).
Education and Workforce
Texas A&M introduced a new Master of Science program for microelectronics and semiconductors, which will begin in fall 2025.
The Cornell NanoScale Science and Technology Facility (CNF) is partnering with Tompkins Cortland Community College and Penn State to offer a free Microelectronics and Nanomanufacturing Certificate Program to veterans and their dependents.
Eindhoven University of Technology (TU/e) has more than 700 researchers and 25 research group focused on the chip industry, but the number is projected to grow significantly due to the Dutch government’s recent investment.
Research
Intelannounced a large-scale neuromorphic system based on its Loihi 2 processor. Initially deployed at Sandia National Laboratories, it aims to support research for future brain-inspired AI. Intel is also collaborating with Seekr on next-gen LLM and foundation models.
Los Alamos National Lab,HPE, and NVIDIA collaborated on the design and installation of Venado, the Lab’s new supercomputer. “Venado adds to our cutting-edge supercomputing that advances national security and basic research, and it will accelerate how we integrate artificial intelligence into meeting those challenges,” said Thom Mason, director of Los Alamos National Laboratory in a release.
Penn State is partnering with Morgan Advanced Materials on a five-year, multi-million-dollar research project to advance silicon carbide (SiC) technology. Morgan will become a founding member of the Penn State Silicon Carbide Innovation Alliance. Also, Coherentsecured CHIPS Act funding of $15 million for research into high-voltage, high-power silicon carbide and single-crystal diamond semiconductors.
Oak Ridge National Laboratory (ORNL) researchers found a more efficient way to extract lithium from waste liquids leached from mining sites, oil fields, and used batteries.
Quantum
Quantinuum said it reached an inherent 99.9% 2-qubit gate fidelity in its commercial quantum computer, a point at which quantum error correction protocols can be used to greatly reduce error rates.
D-Wave Quantumuncorked a fast-anneal feature to speed up computations on its quantum processing units, which reduces the impact of external disturbances.
MIT researchers outlined a new conceptual model for a quantum computer that aims to make writing code for them easier.
SLAC National Accelerator Laboratory, Stanford University, Max Planck Institute of Quantum Optics, Ludwig-Maximilians-Universitat Munich, and Instituto de Ciencia de Materiales de Madrid researchers proposed a method that harnesses the structure of light to tweak the properties of quantum materials.
Events
Find upcoming chip industry events here, including:
Event
Date
Location
IEEE Custom Integrated Circuits Conference (CICC)
Apr 21 – 24
Denver, Colorado
MRS Spring Meeting & Exhibit
Apr 22 – 26
Seattle, Washington
(note: Virtual held in May)
IEEE VLSI Test Symposium
Apr 22 – 24
Tempe, AZ
TSMC North America Symposium
Apr 24
Santa Clara, CA
Renesas Tech Day: Scalable AI Solutions for the Edge
May 1
Boston
IEEE International Symposium on Hardware Oriented Security and Trust (HOST)
SK hynix and TSMC plan to collaborate on HBM4 development and next-generation packaging technology, with plans to mass produce HBM4 chips in 2026. The agreement is an early indicator for just how competitive, and potentially lucrative, the HBM market is becoming. SK hynix said the collaboration will enable breakthroughs in memory performance with increased density of the memory controller at the base of the HBM stack.
Intel assembled the industry’s first high-NA EUV lithography system. “Compared to 0.33NA EUV, high-NA EUV (or 0.55NA EUV) can deliver higher imaging contrast for similar features, which enables less light per exposure, thereby reducing the time required to print each layer and increasing wafer output,” Intel said.
Fig. 1: Bigger iron — Intel’s brand new high-NA EUV machinery. Source: Intel
Samsung is slated to receive $6.4 billion in CHIPS ACT funding from the U.S. Department of Commerce (DoC) as part of a $40 billion expansion of its Austin, Texas, manufacturing facility, along with an R&D fab, a pair of leading-edge logic fabs, and an advanced packaging plant in nearby Taylor, Texas.
Micron and the U.S. government next week will announce $6.1 billion in CHIPS Act funding for the development of advanced memory chips in New York and Idaho, according to AP News.
Cadenceunveiled its Palladium Z3 Emulation and Protium X3 FPGA Prototyping systems, targeted at multi-billion-gate designs with 2X increase in capacity and a 1.5X performance increase compared to previous-generation systems. Cadence also teamed up with MemVerge to enable seamless support for AWS Spot instances for long-running high-memory EDA jobs, and extended its hybrid cloud environment solutions through a collaboration with NetApp.
Fig. 2: At CadenceLive Silicon Valley, NVIDIA CEO Jensen Huang (r.) discussed accelerated computing and generative AI with Cadence CEO Anirudh Devgan. Source: Semiconductor Engineering
After Taiwan’s recent 7.2 magnitude earthquake, TSMC reached more the 70% tool recovery in its fabs within the first 10 hours and full recovery by the end of the third day, according to this week’s earnings call. Some wafers in process were scrapped but the company expects the lost production to be recovered in the second quarter. Also in the call, TSMC said they expect their “customers to share some of the higher cost” of the overseas fabs and higher electricity costs.
Advantest‘s regional headquarters in Taiwandonated $2.2 million New Taiwan dollars ($680,000 US) for aid to victims and reconstruction efforts related to the Taiwan earthquake that struck on April 3.
Japan’s exports grew by more than 7% YoY in March, driven by an 11.3% increase in shipments of electronics and semiconductor manufacturing equipment, much of it to China, according to NikkeiAsia.
China‘s IC output grew 40% in the first quarter, primarily driven by EVs and smartphones, according to the South China Morning Post.
In the U.S., the Biden Administration released a notice of funding opportunity of $50 million targeted at small businesses pursuing advances in metrology research and technology. Also, the U.S. Department of Energy announced a $33 million funding opportunity for smart manufacturing technologies.
Germany‘s Fraunhofer IIS launched its On-Board Processor (FOBP) for the German Space Agency’s Heinrich Hertz communication satellite. FOBP can be controlled and reprogrammed from Earth and will be used to investigate creation of hybrid communication networks.
Markets and Money
RISC-V startup Rivosraised more than $250 million in capital investments to tape out its first power-optimized chips for data analytics and generative AI applications.
Silvacofiled to go public on Nasdaq. The company also received a $5 million convertible note investment from Microchip.
Microchip acquiredNeuronix AI Labs to provide AI-enabled FPGA solutions for large-scale, high-performance edge applications.
The advanced packaging market saw a modest 4% increase in revenues in Q4 2023 versus the previous quarter, with a projected decline of 13% QoQ in the first quarter of 2024, reports Yole. Overall, the market is expected to increase from $38 billion in 2023 to $69.5 billion in 2029 with a CAGR of 10.7%.
TSMC’s CoWoS total capacity will increase by 150% in 2024 due to demand for NVIDIA’s Blackwell Platform, reports TrendForce.
ASML saw a nearly 40% drop in new litho equipment sales QoQ in Q1 2024 and a 61% drop in net bookings as manufacturers reduced investments in new capital equipment during the recent semiconductor market slump.
Global PC shipments rose about 3% YoY in Q1 2024, and that same growth is expected for full year 2024, reports Counterpoint. Manufacturers are predicted to promote AI PCs as semiconductor companies prepare to launch SoCs featuring higher TOPS.
The GenAI smartphone market share is predicted to reach 11% by 2024 and 43% by 2027, reports Counterpoint. Samsung likely will lead in 2024, but Apple may overtake it in 2025.
The RF GaN market is expected to exceed $2 billion by 2029, fueled by the defense and telecom infrastructure sectors, reports Yole.
Seoul National University, Sandia National Laboratories, Texas A&M University, and Applied Materials demonstrated a memristor crossbar architecture for encryption and decryption.
Robert Bosch, Forschungszentrum Julich, and Newcastle University investigated techniques for error detection and correction in in-memory computing.
The University of Florida introduced an automated framework that can help identify security assets for a design at the register-transfer level (RTL).
DARPA conducted successful in-air tests of AI flying an F-16 autonomously versus a human-piloted F-16 in visual-range combat scenarios.
The National Security Agency’s Artificial Intelligence Security Center (NSA AISC) published joint guidance on deploying AI systems securely with the Cybersecurity and Infrastructure Security Agency (CISA), the Federal Bureau of Investigation (FBI), and international partners. CISA also issued other alerts.
Products and Standards
Samsunguncorked LPDDR5X DRAM built on a 12nm process that supports up to 10.7 Gbps and expands the single package capacity of mobile DRAM up to 32 GB.
Keysightrevealed its next-generation RF circuit simulation tool that supports multi-physics co-design of circuit, electromagnetic, and electrothermal simulations across Cadence, Synopsys, and Keysight platforms.
Renesas released its FemtoClock family of ultra-low jitter clock generators and jitter attenuators with 8 and 12 outputs, enabling clock tree designs for high-speed interconnect systems in telecom and data center switches, routers, medical imaging, and more.
Movellusexpanded its droop response solutions with Aeonic Generate AWM3, which responds to voltage droops within 1 to 2 clock cycles while providing enhanced observability for droop profiling and enabling fine-grained dynamic frequency scaling.
Efablessannounced the second version of its Python-based open-source EDA software for construction of customizable flows using proprietary or open-source tools.
Faraday TechnologylicensedArm’s Cortex-A720AE IP to use in the development of AI-enabled vehicle ASICs. Also, Untether AIteamed up with Arm to enable its inference acceleration technology to be implemented alongside the latest-generation Automotive Enhanced technology from Arm for ADAS and autonomous vehicle applications.
FOXESS used Infineon’s 1,200V CoolSiC MOSFETs and EiceDRIVER gate drivers for industrial energy storage applications, aiming to promote green energy.
Emotors adopted Siemens’ Simcenter solutions for NVH testing of next-gen automotive e-drives.
SiTimedebuted a family of clock generators for AI datacenter applications with clock, oscillator, and resonator in an integrated chip.
JEDECpublished the JESD79-5C DDR5 SDRAM standard, which includes a DRAM data integrity improvement called Per-Row Activation Counting (PRAC) that precisely counts DRAM activations on a wordline granularity and alerts the system to pause traffic and designate time for mitigation measures when an excessive number of activations are detected.
The LoRa Alliance launched its roadmap for the development of the LoRaWAN open standard for IoT communications, referring to long-range radio (LoRa) low-power wide-area networks (LPWANs).
Education and Workforce
Texas A&M introduced a new Master of Science program for microelectronics and semiconductors, which will begin in fall 2025.
The Cornell NanoScale Science and Technology Facility (CNF) is partnering with Tompkins Cortland Community College and Penn State to offer a free Microelectronics and Nanomanufacturing Certificate Program to veterans and their dependents.
Eindhoven University of Technology (TU/e) has more than 700 researchers and 25 research group focused on the chip industry, but the number is projected to grow significantly due to the Dutch government’s recent investment.
Research
Intelannounced a large-scale neuromorphic system based on its Loihi 2 processor. Initially deployed at Sandia National Laboratories, it aims to support research for future brain-inspired AI. Intel is also collaborating with Seekr on next-gen LLM and foundation models.
Los Alamos National Lab,HPE, and NVIDIA collaborated on the design and installation of Venado, the Lab’s new supercomputer. “Venado adds to our cutting-edge supercomputing that advances national security and basic research, and it will accelerate how we integrate artificial intelligence into meeting those challenges,” said Thom Mason, director of Los Alamos National Laboratory in a release.
Penn State is partnering with Morgan Advanced Materials on a five-year, multi-million-dollar research project to advance silicon carbide (SiC) technology. Morgan will become a founding member of the Penn State Silicon Carbide Innovation Alliance. Also, Coherentsecured CHIPS Act funding of $15 million for research into high-voltage, high-power silicon carbide and single-crystal diamond semiconductors.
Oak Ridge National Laboratory (ORNL) researchers found a more efficient way to extract lithium from waste liquids leached from mining sites, oil fields, and used batteries.
Quantum
Quantinuum said it reached an inherent 99.9% 2-qubit gate fidelity in its commercial quantum computer, a point at which quantum error correction protocols can be used to greatly reduce error rates.
D-Wave Quantumuncorked a fast-anneal feature to speed up computations on its quantum processing units, which reduces the impact of external disturbances.
MIT researchers outlined a new conceptual model for a quantum computer that aims to make writing code for them easier.
SLAC National Accelerator Laboratory, Stanford University, Max Planck Institute of Quantum Optics, Ludwig-Maximilians-Universitat Munich, and Instituto de Ciencia de Materiales de Madrid researchers proposed a method that harnesses the structure of light to tweak the properties of quantum materials.
Events
Find upcoming chip industry events here, including:
Event
Date
Location
IEEE Custom Integrated Circuits Conference (CICC)
Apr 21 – 24
Denver, Colorado
MRS Spring Meeting & Exhibit
Apr 22 – 26
Seattle, Washington
(note: Virtual held in May)
IEEE VLSI Test Symposium
Apr 22 – 24
Tempe, AZ
TSMC North America Symposium
Apr 24
Santa Clara, CA
Renesas Tech Day: Scalable AI Solutions for the Edge
May 1
Boston
IEEE International Symposium on Hardware Oriented Security and Trust (HOST)
Among the countless challenges of decarbonizing transportation, one of the most compelling involves electric motors. In laboratories all over the world, researchers are now chasing a breakthrough that could kick into high gear the transition to electric transportation: a rugged, compact, powerful electric motor that has high power density and the ability to withstand high temperatures—and that doesn’t have rare-earth permanent magnets.
It’s a huge challenge currently preoccupying some of the best machine designers on the planet. More than a few of them are at
ZF Friedrichshafen AG, one of the world’s largest suppliers of parts to the automotive industry. In fact, ZF astounded analysts late last year when it announced that it had built a 220-kilowatt traction motor that used no rare-earth elements. Moreover, the company announced, their new motor had characteristics comparable to the rare-earth permanent-magnet synchronous motors that now dominate in electric vehicles. Most EVs have rare-earth-magnet-based motors ranging from 150 to 300 kilowatts, and power densities between 1.1 and 3.0 kilowatts per kilogram. Meanwhile, the company says they’ve developed a rare-earth-free motor right in the middle of that range: 220 kW. (The company has not yet revealed its motor’s specific power—its kW/kg rating.)
The ZF machine is a type called a separately-excited (or doubly-excited) synchronous motor. It has electromagnets in both the stator and the rotor, so it does away with the rare-earth permanent magnets used in the rotors of nearly all EV motors on the road today. In a separately-excited synchronous motor, alternating current applied to the stator electromagnets sets up a rotating magnetic field. A separate current applied to the rotor electromagnets energizes them, producing a field that locks on to the rotating stator field, producing torque.
“As a matter of fact, 95 percent of the rare earths are mined in China. And this means that if China decides no one else will have rare earths, we can do nothing against it.”
—Otmar Scharrer, ZF Friedrichshafen AG
So far, these machines have not been used much in EVs, because they require a separate system to transfer power to the spinning rotor magnets, and there’s no ideal way to do that. Many such motors use sliders and brushes to make electrical contact to a spinning surface, but the brushes produce dust and eventually wear out. Alternatively, the power can be transferred via inductance, but in that case the apparatus is typically cumbersome, making the unit complicated and physically large and heavy.
Now, though, ZF says it has solved these problems with its experimental motor, which it calls
I2SM (for In-Rotor Inductive-Excited Synchronous Motor). Besides not using any rare earth elements, the motor offers a few other advantages in comparison with permanent-magnet synchronous motors. These are linked to the fact that this kind of motor technology offers the ability to precisely control the magnetic field in the rotor—something that’s not possible with permanent magnets. That control, in turn, permits varying the field to get much higher efficiency at high speed, for example.
With headquarters in Baden-Württemberg, Germany, ZF Friedrichshafen AG is known for a
rich R&D heritage and many commercially successful innovations dating back to 1915, when it began supplying gears and other parts for Zeppelins. Today, the company has some 168,000 employees in 31 countries. Among the customers for its motors and electric drive trains are Mercedes-Benz, BMW, and Jaguar Land Rover. (Late last year, shortly after announcing the I2SM, the company announced the sale of its 3,000,000th motor.)
Has ZF just shown the way forward for rare-earth-free EV motors? To learn more about the I
2SM and ZF’s vision of the future of EV traction motors, Spectrum reached out to Otmar Scharrer, ZF’s Senior Vice President, R&D, of Electrified Powertrain Technology. Our interview with him has been edited for concision and clarity.
IEEE Spectrum: Why is it important to eliminate or to reduce the use of rare-earth elements in traction motors?
ZF Friedrichshafen AG’s Otmar Scharrer is leading a team discovering ways to build motors that don’t depend on permanent magnets—and China’s rare-earth monopolies. ZF Group
Otmar Scharrer: Well, there are two reasons for that. One is sustainability. We call them “rare earth” because they really are rare in the earth. You need to move a lot of soil to get to these materials. Therefore, they have a relatively high footprint because, usually, they are dug out of the earth in a mine with excavators and huge trucks. That generates some environmental pollution and, of course, a change of the landscape. That is one thing. The other is that they are relatively expensive. And of course, this is something we always address cautiously as a tier one [automotive industry supplier].
And as a matter of fact, 95 percent of the rare earths are produced in China. And this means that if China decides no one else will have rare earths, we can do nothing against it. The recycling circle [for rare earth elements] will not work because there are just not enough electric motors out there. They still have an active lifetime. When you are ramping up, when you have a steep ramp up in terms of volume, you never can satisfy your demands with recycling. Recycling will only work if you have a constant business and you’re just replacing those units which are failing. I’m sure this will come, but we see this much later when the steep ramp-up has ended.
“The power density is the same as for a permanent-magnet machine, because we produce both. And I can tell you that there is no difference.”
—Otmar Scharrer, ZF Friedrichshafen AG
You had asked a very good question: How much rare-earth metal does a typical traction motor contain? I had to ask my engineers. This is an interesting question. Most of our electric motors are in the range of 150 to 300 kilowatts. This is the main range of power for passenger cars. And those motors typically have 1.5 kilograms of magnet material. And 0.5 percent to 1 percent out of this material is pure [heavy rare-earth elements]. So this is not too much. It’s only 5 to 15 grams. But, yes, it’s a very difficult-to-get material.
This is the reason for this [permanent-] magnet-free motor. The concept itself is not new. It has been used for years and years, for decades, because usually, power generation is done with this kind of electric machine. So if you have a huge power plant, for example, a gas power plant, then you would typically find such an externally-excited machine as a generator.
We did not use them for passenger cars or for mobile applications because of their weight and size. And some of that weight-and-size problem comes directly from the need to generate a magnetic field in the rotor, to replace the [permanent] magnets. You need to set copper coils under electricity. So you need to carry electric current inside the rotor. This is usually done with sliders. And those sliders generate losses. This is the one thing because you have, typically, carbon brushes touching a metal ring so that you can conduct the electricity.
Those brushes are what make the unit longer, axially, in the direction of the axle?
Scharrer: Exactly. That’s the point. And you need an inverter which is able to excite the electric machine. Normal inverters have three phases, and then you need a fourth phase to electrify the rotor. And this is a second obstacle. Many OEMs or e-mobility companies do not have this technology ready. Surprisingly enough, the first ones who brought this into serious production were [Renault]. It was a very small car, a Renault. [Editor's note: the model was the Zoe, which was manufactured from 2013 until March of this year.]
It had a relatively weak electric motor, just 75 or 80 kilowatts. They decided to do this because in an electric vehicle, there’s a huge advantage with this kind of externally excited machine. You can switch off and switch on the magnetic field. This is a great safety advantage. Why safety? Think about it. If your bicycle has a generator [for a headlight], it works like an electric motor. If you are moving and the generator is spinning, connected to the wheel, then it is generating electricity.
“We have an efficiency of approximately 96 percent. So, very little loss.”
—Otmar Scharrer, ZF Friedrichshafen AG
The same is happening in an electric machine in the car. If you are driving on the highway at 75 miles an hour, and then suddenly your whole system breaks down, what would happen? In a permanent magnet motor, you would generate enormous voltage because the rotor magnets are still rotating in the stator field. But in a permanent-magnet-free motor, nothing happens. You are just switched off. So it is self-secure. This is a nice feature.
And the second feature is even better if you drive at high speed. High speed is something like 75, 80, 90 miles an hour. It’s not too common in most countries. But it’s a German phenomenon, very important here.
People like to drive fast. Then you need to address the area of field weakening because [at high speed], the magnetic field would be too strong. You need to weaken the field. And if you don’t have [permanent] magnets, it’s easy: you just adapt the electrically-induced magnetic field to the appropriate value, and you don’t have this field-weakening requirement. And this results in much higher efficiency at high speeds.
You called this field weakening at high speed?
Scharrer: You need to weaken the magnetic field in order to keep the operation stable. And this weakening happens by additional electricity coming from the battery. And therefore, you have a lower efficiency of the electric motor.
What are the most promising concepts for future EV motors?
Scharrer: We believe that our concept is most promising, because as you pointed out a couple of minutes ago, we are growing in actual length when we do an externally excited motor. We thought a lot what we can do to overcome this obstacle. And we came to the conclusion, let’s do it inductively, by electrical inductance. And this has been done by competitors as well, but they simply replaced the slider rings with inductance transmitters.
“We are convinced that we can build the same size, the same power level of electric motors as with the permanent magnets.”
—Otmar Scharrer, ZF Friedrichshafen AG
And this did not change the situation. What we did, we were shrinking the inductive unit to the size of the rotor shaft, and then we put it inside the shaft. And therefore, we reduced this 50-to-90-millimeter growth in axial length. And therefore, as a final result, you know the motor shrinks, the housing gets smaller, you have less weight, and you have the same performance density in comparison with a PSM [permanent-magnet synchronous motor] machine.
What is an inductive exciter exactly?
Scharrer: Inductive exciter means nothing else than that you transmit electricity without touching anything. You do it with a magnetic field. And we are doing it inside of the rotor shaft. This is where the energy is transmitted from outside to the shaft [and then to the rotor electromagnets].
So the rotor shaft, is that different from the motor shaft, the actual torque shaft?
Scharrer: It’s the same.
The thing I know with inductance is in a transformer, you have coils next to each other and you can induce a voltage from the energized coil in the other coil.
Scharrer: This is exactly what is happening in our rotor shafts.
So you use coils, specially designed, and you induce voltage from one to the other?
Scharrer: Yes. And we have a very neat, small package, which has a diameter of less than 30 millimeters. If you can shrink it to that value, then you can put it inside the rotor shaft.
So of course, if you have two coils, and they’re spaced next to each other, you have a gap. So that gap enables you to spin, right? Since they’re not touching, they can spin independently. So you had to design something where the field could be transferred. In other words, they could couple even though one of them was spinning.
Scharrer: We have a coil in the rotor shaft, which is rotating with the shaft. And then we have another one that is stationary inside the rotor shaft while the shaft rotates around it. And there is an air gap in between. Everything happens inside the rotor shaft.
What is the efficiency? How much power do you lose?
Scharrer: We have an efficiency of approximately 96 percent. So, very little loss. And for the magnetic field, you don’t need a lot of energy. You need something between 10 and 15 kilowatts for the electric field. Let’s assume a transmitted power of 10 kilowatts, we’ll have losses of about 400 watts. This [relatively low level of loss] is important because we don’t cool the unit actively and therefore it needs this kind of high efficiency.
The motor isn’t cooled with liquids?
Scharrer: The motor itself is actively cooled, with oil, but the inductive unit is passively cooled, with heat transfer to nearby cooling structures.
“A good invention is always easy. If you look as an engineer on good IP, then you say, ‘Okay, that looks nice.’”
—Otmar Scharrer, ZF Friedrichshafen AG
What are the largest motors you’ve built or what are the largest motors you think you can build, in kilowatts?
Scharrer: We don’t think that there is a limitation with this technology. We are convinced that we can build the same size, the same power level of electric motors as with the permanent magnets.
What have you done so far? What prototypes have you built?
Scharrer: We have a prototype with 220 kilowatts. And we can easily upgrade it to 300, for example. Or we can shrink it to 150. That is always easy.
And what is your specific power of this motor?
Scharrer: You mean kilowatts per kilogram? I can’t tell you, to be quite honest. It’s hard to compare, because it always depends on where the borderline is. You never have a motor by itself. You always need a housing as well. What part of the housing are you including in the calculation? But I can tell you one thing: The power density is the same as for a permanent-magnet machine because we produce both. And I can tell you that there is no difference.
What automakers do you currently have agreements with? Are you providing electric motors for certain automakers? Who are some of your customers now?
Scharrer: We are providing our dedicated hybrid transmissions to BMW, to Jaguar Land Rover, and our electric-axle drives to Mercedes-Benz and Geely Lotus, for example. And we are, of course, in development with a lot of other applications. And I think you understand that I cannot talk about that.
So for BMW, Land Rover, Mercedes-Benz, you’re providing electric motors and drivetrain components?
Scharrer: BMW and Land Rover. We provide dedicated hybrid transmissions. We provide an eight-speed automatic transmission with a hybrid electric motor up to 160 kilowatts. It’s one of the best hybrid transmissions because you can drive fully electrically with 160 kilowatts, which is quite something.
“We achieved the same values, for power density and other characteristics, for as for a [permanent] magnet motor. And this is really a breakthrough because according to our best knowledge, this never happened before.”
—Otmar Scharrer, ZF Friedrichshafen AG
What were the major challenges you had to overcome, to transmit the power inside the rotor shaft?
Scharrer: The major challenge is, always, it needs to be very small. At the same time, it needs to be super reliable, and it needs to be easy.
A good invention is always easy. When you see it, if you look as an engineer on good IP [intellectual property], then you say, “Okay, that looks nice”—it’s quite obvious that it’s a good idea. If the idea is complex and it needs to be explained and you don’t understand it, then usually this is not a good idea to be implemented. And this one is very easy. Straightforward. It’s a good idea: Shrink it, put it into the rotor shaft.
So you mean very easy to explain?
Scharrer: Yes. Easy to explain because it’s obviously an interesting idea. You just say, “Let’s use part of the rotor shaft for the transmission of the electricity into the rotor shaft, and then we can cut the additional length out of the magnet-free motor.” Okay. That’s a good answer.
We have a lot of IP here. This is important because if you have the idea, I mean, the idea is the main thing.
What were the specific savings in weight and rotor shaft and so on?
Scharrer: Well, again, I would just answer in a very general way. We achieved the same values, for power density and other characteristics, as for a [permanent] magnet motor. And this is really a breakthrough because according to our best knowledge, this never happened before.
Do you think the motor will be available before the end of this year or perhaps next year?
Scharrer: You mean available for a serious application?
Yes. If Volkswagen came to you and said, “Look, we want to use this in our next car,” could you do that before the end of this year, or would it have to be 2025?
Scharrer: It would have to be 2025. I mean, technically, the electric motor is very far along. It is already in an A-sample status, which means we are...
What kind of status?
Scharrer: A-sample. In the automotive industry, you have A, B, or C. For A-sample, you have all the functions, and you have all the features of the product, and those are secured. And then B- is, you are not producing any longer in the prototype shop, but you are producing close to a possibly serious production line. C-sample means you are producing on serious fixtures and tools, but not on a [mass-production] line. And so this is an A-sample, meaning it is about one and a half years away from a conventional SOP ["Start of Production"] with our customer. So we could be very fast.
This article was updated on 15 April 2024. An earlier version of this article gave an incorrect figure for the efficiency of the inductive exciter used in the motor. This efficiency is 96 percent, not 98 or 99 percent.