FreshRSS

Normální zobrazení

Jsou dostupné nové články, klikněte pro obnovení stránky.
PředevčíremHlavní kanál
  • ✇Semiconductor Engineering
  • UCIe And Automotive Electronics: Pioneering The Chiplet RevolutionVinod Khera
    The automotive industry stands at the brink of a profound transformation fueled by the relentless march of technological innovation. Gone are the days of the traditional, one-size-fits-all system-on-chip (SoC) design framework. Today, we are witnessing a paradigm shift towards a more modular approach that utilizes diverse chiplets, each optimized for specific functionalities. This evolution promises to enhance the automotive system’s flexibility and efficiency and revolutionize how vehicles are
     

UCIe And Automotive Electronics: Pioneering The Chiplet Revolution

9. Květen 2024 v 09:02

The automotive industry stands at the brink of a profound transformation fueled by the relentless march of technological innovation. Gone are the days of the traditional, one-size-fits-all system-on-chip (SoC) design framework. Today, we are witnessing a paradigm shift towards a more modular approach that utilizes diverse chiplets, each optimized for specific functionalities. This evolution promises to enhance the automotive system’s flexibility and efficiency and revolutionize how vehicles are designed, built, and operated.

At the heart of this transformation lies the Universal Chiplet Interconnect Express (UCIe), a groundbreaking standard introduced in March 2022. UCIe is designed to drastically simplify the integration process across different chiplets from various manufacturers by standardizing die-to-die connections. This initiative caters to a critical need within the industry for a modular and scalable semiconductor architecture, thus setting the stage for unparalleled innovation in automotive electronics.

Understanding the core benefit of UCIe

UCIe isn’t merely about facilitating smoother communication between chiplets; it’s a visionary standard that ensures interoperability, reduces design complexity and costs, and, crucially, supports the seamless incorporation of chiplets into cohesive packages. Developed through the collaborative efforts of the UCIe consortium, this standard enables the use of chiplets from different vendors, thereby fostering a highly customizable and scalable solution. This mainly benefits the automotive sector, where high performance, reliability, and efficiency demand is paramount.

The pivotal role of UCIe in automotive electronics

Implementing UCIe within automotive electronics unlocks a plethora of advantages. Foremost among these is the ability to design more compact, powerful, and energy-efficient electronic systems. UCIe offers savings in energy per bit compared to other serial or parallel interfaces.

Given the increasing complexity and functionality of modern vehicles — which can be likened to data centers on wheels — the modular design principle of UCIe is invaluable. It facilitates the addition of new functionalities and ensures that automotive electronics can seamlessly adapt to and incorporate emerging technologies and standards.

Secondly, the adoption of UCIe marks a significant stride toward sustainable electronic design within the automotive industry. By promoting the reuse and integration of chiplets across different platforms and vehicle models, UCIe significantly mitigates electronic waste and streamlines the lifecycle management of electronic components. This benefits manufacturers regarding cost and efficiency and aligns with broader industry trends focused on sustainability and environmental stewardship.

Offerings and solutions

Cadence offers a range of Intellectual Properties (IPs), Electronic Design Automation (EDA) tools, and 3D Integrated Circuits (ICs) tailored for chiplets.

Since the beginning of UCIe, Cadence has engaged with over 100 customers and enables automotive solutions with UCIe and its working groups. The implementation features for automotive protect the mainband, and Cadence also adds protection for the sideband, particularly for the automotive industry. UCIe is being developed across multiple foundries, process nodes, and standard and advanced packaging enablement types.

Cadence has a history of chiplet experience with an interface IP portfolio, including our chiplet die-to-die interconnects, including the UCIe IP, and proprietary 40G UltraLink D2D PHY that enables SoC providers to deliver more customized solutions that offer higher performance and yields while also shortening development cycles and reducing costs through greater IP reuse. Cadence’s UCIe PHY solutions facilitate high-speed communication and interoperability among chiplets. Additionally, the Cadence Simulation VIP for UCIe ensures that systems using UCIe are reliable and performant, addressing one of the industry’s key concerns.

The Cadence UCIe PHY is a high-bandwidth, low-power, and low-latency die-to-die solution that enables multi-die system in package integration for high-performance compute, AI/ML, 5G, automotive and networking applications. The UCIe physical layer includes link initialization, training, power management states, lane mapping, lane reversal, and scrambling. The UCIe controller includes the die-to-die adapter layer and the protocol layer. The adapter layer ensures reliable transfer through link state management, protocol, and flit formats parameter negotiation. The UCIe architecture supports multiple standard protocols such as PCIe, CXL and streaming raw mode.

For interface IP, we usually create various test chips using different process technologies and measure the silicon in the lab to prove that our controller and PHY IPs fully comply with the standard. Hence, we designed a test chip with seven chiplets connected via UCIe over different interconnect distances. To learn more, click here.

The Cadence Verification IP (VIP) for Universal Chiplet Interconnect Express (UCIe) is designed for easy integration in test benches at the IP, system-on-chip (SoC), and system level. The VIP for UCIe runs on all simulators and supports SystemVerilog and the widely adopted Universal Verification Methodology (UVM). This enables verification teams to reduce the time spent on environment development and redirect it to cover a larger verification space, accelerate verification closure, and ensure end-product quality. With a layered architecture and powerful callback mechanism, verification engineers can verify UCIe features at each functional layer (PHY, D2D, Protocol) and create highly targeted designs while using the latest design methodologies for random testing to cover a larger verification space. The VIP for UCIe can be used as a standalone stack or layered with PCIe VIP.

Challenges and future prospects

The transition to chiplet-based designs and the widespread adoption of the UCIe standard are not without their challenges. Critical concerns include functional safety, reliability, quality, security, thermal management, and mechanical stress. Hence, ensuring dependable high-speed interconnects between chiplets necessitates ongoing research and development. Successful implementation also hinges on industry-wide collaboration and establishing a robust chiplet ecosystem that supports the UCIe standard.

UCIe stands as a pioneering innovation poised to redefine automotive electronics. By offering a scalable and flexible framework, UCIe promises to enhance in-vehicle electronic systems’ performance, efficiency, and versatility and marks a significant milestone in the automotive industry’s evolution. As we look to the future, the impact of UCIe in the automotive sector is poised to be profound, turning vehicles into dynamic platforms that continuously adapt to technological advancements and user needs. The realization of modular, customizable designs underscored by efficiency, performance, and innovation heralds the dawn of a new era in semiconductor development, one where the possibilities are as boundless as the technological horizon.

The post UCIe And Automotive Electronics: Pioneering The Chiplet Revolution appeared first on Semiconductor Engineering.

  • ✇Semiconductor Engineering
  • UCIe And Automotive Electronics: Pioneering The Chiplet RevolutionVinod Khera
    The automotive industry stands at the brink of a profound transformation fueled by the relentless march of technological innovation. Gone are the days of the traditional, one-size-fits-all system-on-chip (SoC) design framework. Today, we are witnessing a paradigm shift towards a more modular approach that utilizes diverse chiplets, each optimized for specific functionalities. This evolution promises to enhance the automotive system’s flexibility and efficiency and revolutionize how vehicles are
     

UCIe And Automotive Electronics: Pioneering The Chiplet Revolution

9. Květen 2024 v 09:02

The automotive industry stands at the brink of a profound transformation fueled by the relentless march of technological innovation. Gone are the days of the traditional, one-size-fits-all system-on-chip (SoC) design framework. Today, we are witnessing a paradigm shift towards a more modular approach that utilizes diverse chiplets, each optimized for specific functionalities. This evolution promises to enhance the automotive system’s flexibility and efficiency and revolutionize how vehicles are designed, built, and operated.

At the heart of this transformation lies the Universal Chiplet Interconnect Express (UCIe), a groundbreaking standard introduced in March 2022. UCIe is designed to drastically simplify the integration process across different chiplets from various manufacturers by standardizing die-to-die connections. This initiative caters to a critical need within the industry for a modular and scalable semiconductor architecture, thus setting the stage for unparalleled innovation in automotive electronics.

Understanding the core benefit of UCIe

UCIe isn’t merely about facilitating smoother communication between chiplets; it’s a visionary standard that ensures interoperability, reduces design complexity and costs, and, crucially, supports the seamless incorporation of chiplets into cohesive packages. Developed through the collaborative efforts of the UCIe consortium, this standard enables the use of chiplets from different vendors, thereby fostering a highly customizable and scalable solution. This mainly benefits the automotive sector, where high performance, reliability, and efficiency demand is paramount.

The pivotal role of UCIe in automotive electronics

Implementing UCIe within automotive electronics unlocks a plethora of advantages. Foremost among these is the ability to design more compact, powerful, and energy-efficient electronic systems. UCIe offers savings in energy per bit compared to other serial or parallel interfaces.

Given the increasing complexity and functionality of modern vehicles — which can be likened to data centers on wheels — the modular design principle of UCIe is invaluable. It facilitates the addition of new functionalities and ensures that automotive electronics can seamlessly adapt to and incorporate emerging technologies and standards.

Secondly, the adoption of UCIe marks a significant stride toward sustainable electronic design within the automotive industry. By promoting the reuse and integration of chiplets across different platforms and vehicle models, UCIe significantly mitigates electronic waste and streamlines the lifecycle management of electronic components. This benefits manufacturers regarding cost and efficiency and aligns with broader industry trends focused on sustainability and environmental stewardship.

Offerings and solutions

Cadence offers a range of Intellectual Properties (IPs), Electronic Design Automation (EDA) tools, and 3D Integrated Circuits (ICs) tailored for chiplets.

Since the beginning of UCIe, Cadence has engaged with over 100 customers and enables automotive solutions with UCIe and its working groups. The implementation features for automotive protect the mainband, and Cadence also adds protection for the sideband, particularly for the automotive industry. UCIe is being developed across multiple foundries, process nodes, and standard and advanced packaging enablement types.

Cadence has a history of chiplet experience with an interface IP portfolio, including our chiplet die-to-die interconnects, including the UCIe IP, and proprietary 40G UltraLink D2D PHY that enables SoC providers to deliver more customized solutions that offer higher performance and yields while also shortening development cycles and reducing costs through greater IP reuse. Cadence’s UCIe PHY solutions facilitate high-speed communication and interoperability among chiplets. Additionally, the Cadence Simulation VIP for UCIe ensures that systems using UCIe are reliable and performant, addressing one of the industry’s key concerns.

The Cadence UCIe PHY is a high-bandwidth, low-power, and low-latency die-to-die solution that enables multi-die system in package integration for high-performance compute, AI/ML, 5G, automotive and networking applications. The UCIe physical layer includes link initialization, training, power management states, lane mapping, lane reversal, and scrambling. The UCIe controller includes the die-to-die adapter layer and the protocol layer. The adapter layer ensures reliable transfer through link state management, protocol, and flit formats parameter negotiation. The UCIe architecture supports multiple standard protocols such as PCIe, CXL and streaming raw mode.

For interface IP, we usually create various test chips using different process technologies and measure the silicon in the lab to prove that our controller and PHY IPs fully comply with the standard. Hence, we designed a test chip with seven chiplets connected via UCIe over different interconnect distances. To learn more, click here.

The Cadence Verification IP (VIP) for Universal Chiplet Interconnect Express (UCIe) is designed for easy integration in test benches at the IP, system-on-chip (SoC), and system level. The VIP for UCIe runs on all simulators and supports SystemVerilog and the widely adopted Universal Verification Methodology (UVM). This enables verification teams to reduce the time spent on environment development and redirect it to cover a larger verification space, accelerate verification closure, and ensure end-product quality. With a layered architecture and powerful callback mechanism, verification engineers can verify UCIe features at each functional layer (PHY, D2D, Protocol) and create highly targeted designs while using the latest design methodologies for random testing to cover a larger verification space. The VIP for UCIe can be used as a standalone stack or layered with PCIe VIP.

Challenges and future prospects

The transition to chiplet-based designs and the widespread adoption of the UCIe standard are not without their challenges. Critical concerns include functional safety, reliability, quality, security, thermal management, and mechanical stress. Hence, ensuring dependable high-speed interconnects between chiplets necessitates ongoing research and development. Successful implementation also hinges on industry-wide collaboration and establishing a robust chiplet ecosystem that supports the UCIe standard.

UCIe stands as a pioneering innovation poised to redefine automotive electronics. By offering a scalable and flexible framework, UCIe promises to enhance in-vehicle electronic systems’ performance, efficiency, and versatility and marks a significant milestone in the automotive industry’s evolution. As we look to the future, the impact of UCIe in the automotive sector is poised to be profound, turning vehicles into dynamic platforms that continuously adapt to technological advancements and user needs. The realization of modular, customizable designs underscored by efficiency, performance, and innovation heralds the dawn of a new era in semiconductor development, one where the possibilities are as boundless as the technological horizon.

The post UCIe And Automotive Electronics: Pioneering The Chiplet Revolution appeared first on Semiconductor Engineering.

❌
❌