FreshRSS

Normální zobrazení

Jsou dostupné nové články, klikněte pro obnovení stránky.
PředevčíremHlavní kanál

Team engineers nanoparticles using ion irradiation to advance clean energy and fuel conversion

MIT researchers and colleagues have demonstrated a way to precisely control the size, composition, and other properties of nanoparticles key to the reactions involved in a variety of clean energy and environmental technologies. They did so by leveraging ion irradiation, a technique in which beams of charged particles bombard a material.

They went on to show that nanoparticles created this way have superior performance over their conventionally made counterparts.

“The materials we have worked on could advance several technologies, from fuel cells to generate CO2-free electricity to the production of clean hydrogen feedstocks for the chemical industry [through electrolysis cells],” says Bilge Yildiz, leader of the work and a professor in MIT’s departments of Nuclear Science and Engineering and Materials Science and Engineering.

Critical catalyst

Fuel and electrolysis cells both involve electrochemical reactions through three principal parts: two electrodes (a cathode and anode) separated by an electrolyte. The difference between the two cells is that the reactions involved run in reverse.

The electrodes are coated with catalysts, or materials that make the reactions involved go faster. But a critical catalyst made of metal-oxide materials has been limited by challenges including low durability. “The metal catalyst particles coarsen at high temperatures, and you lose surface area and activity as a result,” says Yildiz, who is also affiliated with the Materials Research Laboratory and is an author of an open-access paper on the work published in the journal Energy & Environmental Science.

Enter metal exsolution, which involves precipitating metal nanoparticles out of a host oxide onto the surface of the electrode. The particles embed themselves into the electrode, “and that anchoring makes them more stable,” says Yildiz. As a result, exsolution has “led to remarkable progress in clean energy conversion and energy-efficient computing devices,” the researchers write in their paper.

However, controlling the precise properties of the resulting nanoparticles has been difficult. “We know that exsolution can give us stable and active nanoparticles, but the challenging part is really to control it. The novelty of this work is that we’ve found a tool — ion irradiation — that can give us that control,” says Jiayue Wang PhD ’22, first author of the paper. Wang, who conducted the work while earning his PhD in the MIT Department of Nuclear Science and Engineering, is now a postdoc at Stanford University.

Sossina Haile ’86, PhD ’92, the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern University, who was not involved in the current work, says:

“Metallic nanoparticles serve as catalysts in a whole host of reactions, including the important reaction of splitting water to generate hydrogen for energy storage. In this work, Yildiz and colleagues have created an ingenious method for controlling the way that nanoparticles form.”

Haile continues, “the community has shown that exsolution results in structurally stable nanoparticles, but the process is not easy to control, so one doesn’t necessarily get the optimal number and size of particles. Using ion irradiation, this group was able to precisely control the features of the nanoparticles, resulting in excellent catalytic activity for water splitting.”

What they did

The researchers found that aiming a beam of ions at the electrode while simultaneously exsolving metal nanoparticles onto the electrode’s surface allowed them to control several properties of the resulting nanoparticles.

“Through ion-matter interactions, we have successfully engineered the size, composition, density, and location of the exsolved nanoparticles,” the team writes in Energy & Environmental Science.

For example, they could make the particles much smaller — down to 2 billionths of a meter in diameter — than those made using conventional thermal exsolution methods alone. Further, they were able to change the composition of the nanoparticles by irradiating with specific elements. They demonstrated this with a beam of nickel ions that implanted nickel into the exsolved metal nanoparticle. As a result, they demonstrated a direct and convenient way to engineer the composition of exsolved nanoparticles.

“We want to have multi-element nanoparticles, or alloys, because they usually have higher catalytic activity,” Yildiz says. “With our approach, the exsolution target does not have to be dependent on the substrate oxide itself.” Irradiation opens the door to many more compositions. “We can pretty much choose any oxide and any ion that we can irradiate with and exsolve that,” says Yildiz.

The team also found that ion irradiation forms defects in the electrode itself. And these defects provide additional nucleation sites, or places for the exsolved nanoparticles to grow from, increasing the density of the resulting nanoparticles.

Irradiation could also allow extreme spatial control over the nanoparticles. “Because you can focus the ion beam, you can imagine that you could ‘write’ with it to form specific nanostructures,” says Wang. “We did a preliminary demonstration [of that], but we believe it has potential to realize well-controlled micro- and nano-structures.”

The team also showed that the nanoparticles they created with ion irradiation had superior catalytic activity over those created by conventional thermal exsolution alone.

Additional MIT authors of the paper are Kevin B. Woller, a principal research scientist at the Plasma Science and Fusion Center (PSFC), home to the equipment used for ion irradiation; Abinash Kumar PhD ’22, who received his PhD from the Department of Materials Science and Engineering (DMSE) and is now at Oak Ridge National Laboratory; and James M. LeBeau, an associate professor in DMSE. Other authors are Zhan Zhang and Hua Zhou of Argonne National Laboratory, and Iradwikanari Waluyo and Adrian Hunt of Brookhaven National Laboratory.

This work was funded by the OxEon Corp. and MIT’s PSFC. The research also used resources supported by the U.S. Department of Energy Office of Science, MIT’s Materials Research Laboratory, and MIT.nano. The work was performed, in part, at Harvard University through a network funded by the National Science Foundation.

© Image: Jiayue Wang

Artist’s representation of nanoparticles with different compositions created by combining two techniques: metal exsolution and ion irradiation. The different colors represent different elements, such as nickel, that can be implanted into an exsolved metal particle to tailor the particle’s compositions and reactivity.

Team engineers nanoparticles using ion irradiation to advance clean energy and fuel conversion

MIT researchers and colleagues have demonstrated a way to precisely control the size, composition, and other properties of nanoparticles key to the reactions involved in a variety of clean energy and environmental technologies. They did so by leveraging ion irradiation, a technique in which beams of charged particles bombard a material.

They went on to show that nanoparticles created this way have superior performance over their conventionally made counterparts.

“The materials we have worked on could advance several technologies, from fuel cells to generate CO2-free electricity to the production of clean hydrogen feedstocks for the chemical industry [through electrolysis cells],” says Bilge Yildiz, leader of the work and a professor in MIT’s departments of Nuclear Science and Engineering and Materials Science and Engineering.

Critical catalyst

Fuel and electrolysis cells both involve electrochemical reactions through three principal parts: two electrodes (a cathode and anode) separated by an electrolyte. The difference between the two cells is that the reactions involved run in reverse.

The electrodes are coated with catalysts, or materials that make the reactions involved go faster. But a critical catalyst made of metal-oxide materials has been limited by challenges including low durability. “The metal catalyst particles coarsen at high temperatures, and you lose surface area and activity as a result,” says Yildiz, who is also affiliated with the Materials Research Laboratory and is an author of an open-access paper on the work published in the journal Energy & Environmental Science.

Enter metal exsolution, which involves precipitating metal nanoparticles out of a host oxide onto the surface of the electrode. The particles embed themselves into the electrode, “and that anchoring makes them more stable,” says Yildiz. As a result, exsolution has “led to remarkable progress in clean energy conversion and energy-efficient computing devices,” the researchers write in their paper.

However, controlling the precise properties of the resulting nanoparticles has been difficult. “We know that exsolution can give us stable and active nanoparticles, but the challenging part is really to control it. The novelty of this work is that we’ve found a tool — ion irradiation — that can give us that control,” says Jiayue Wang PhD ’22, first author of the paper. Wang, who conducted the work while earning his PhD in the MIT Department of Nuclear Science and Engineering, is now a postdoc at Stanford University.

Sossina Haile ’86, PhD ’92, the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern University, who was not involved in the current work, says:

“Metallic nanoparticles serve as catalysts in a whole host of reactions, including the important reaction of splitting water to generate hydrogen for energy storage. In this work, Yildiz and colleagues have created an ingenious method for controlling the way that nanoparticles form.”

Haile continues, “the community has shown that exsolution results in structurally stable nanoparticles, but the process is not easy to control, so one doesn’t necessarily get the optimal number and size of particles. Using ion irradiation, this group was able to precisely control the features of the nanoparticles, resulting in excellent catalytic activity for water splitting.”

What they did

The researchers found that aiming a beam of ions at the electrode while simultaneously exsolving metal nanoparticles onto the electrode’s surface allowed them to control several properties of the resulting nanoparticles.

“Through ion-matter interactions, we have successfully engineered the size, composition, density, and location of the exsolved nanoparticles,” the team writes in Energy & Environmental Science.

For example, they could make the particles much smaller — down to 2 billionths of a meter in diameter — than those made using conventional thermal exsolution methods alone. Further, they were able to change the composition of the nanoparticles by irradiating with specific elements. They demonstrated this with a beam of nickel ions that implanted nickel into the exsolved metal nanoparticle. As a result, they demonstrated a direct and convenient way to engineer the composition of exsolved nanoparticles.

“We want to have multi-element nanoparticles, or alloys, because they usually have higher catalytic activity,” Yildiz says. “With our approach, the exsolution target does not have to be dependent on the substrate oxide itself.” Irradiation opens the door to many more compositions. “We can pretty much choose any oxide and any ion that we can irradiate with and exsolve that,” says Yildiz.

The team also found that ion irradiation forms defects in the electrode itself. And these defects provide additional nucleation sites, or places for the exsolved nanoparticles to grow from, increasing the density of the resulting nanoparticles.

Irradiation could also allow extreme spatial control over the nanoparticles. “Because you can focus the ion beam, you can imagine that you could ‘write’ with it to form specific nanostructures,” says Wang. “We did a preliminary demonstration [of that], but we believe it has potential to realize well-controlled micro- and nano-structures.”

The team also showed that the nanoparticles they created with ion irradiation had superior catalytic activity over those created by conventional thermal exsolution alone.

Additional MIT authors of the paper are Kevin B. Woller, a principal research scientist at the Plasma Science and Fusion Center (PSFC), home to the equipment used for ion irradiation; Abinash Kumar PhD ’22, who received his PhD from the Department of Materials Science and Engineering (DMSE) and is now at Oak Ridge National Laboratory; and James M. LeBeau, an associate professor in DMSE. Other authors are Zhan Zhang and Hua Zhou of Argonne National Laboratory, and Iradwikanari Waluyo and Adrian Hunt of Brookhaven National Laboratory.

This work was funded by the OxEon Corp. and MIT’s PSFC. The research also used resources supported by the U.S. Department of Energy Office of Science, MIT’s Materials Research Laboratory, and MIT.nano. The work was performed, in part, at Harvard University through a network funded by the National Science Foundation.

© Image: Jiayue Wang

Artist’s representation of nanoparticles with different compositions created by combining two techniques: metal exsolution and ion irradiation. The different colors represent different elements, such as nickel, that can be implanted into an exsolved metal particle to tailor the particle’s compositions and reactivity.

Team engineers nanoparticles using ion irradiation to advance clean energy and fuel conversion

MIT researchers and colleagues have demonstrated a way to precisely control the size, composition, and other properties of nanoparticles key to the reactions involved in a variety of clean energy and environmental technologies. They did so by leveraging ion irradiation, a technique in which beams of charged particles bombard a material.

They went on to show that nanoparticles created this way have superior performance over their conventionally made counterparts.

“The materials we have worked on could advance several technologies, from fuel cells to generate CO2-free electricity to the production of clean hydrogen feedstocks for the chemical industry [through electrolysis cells],” says Bilge Yildiz, leader of the work and a professor in MIT’s departments of Nuclear Science and Engineering and Materials Science and Engineering.

Critical catalyst

Fuel and electrolysis cells both involve electrochemical reactions through three principal parts: two electrodes (a cathode and anode) separated by an electrolyte. The difference between the two cells is that the reactions involved run in reverse.

The electrodes are coated with catalysts, or materials that make the reactions involved go faster. But a critical catalyst made of metal-oxide materials has been limited by challenges including low durability. “The metal catalyst particles coarsen at high temperatures, and you lose surface area and activity as a result,” says Yildiz, who is also affiliated with the Materials Research Laboratory and is an author of an open-access paper on the work published in the journal Energy & Environmental Science.

Enter metal exsolution, which involves precipitating metal nanoparticles out of a host oxide onto the surface of the electrode. The particles embed themselves into the electrode, “and that anchoring makes them more stable,” says Yildiz. As a result, exsolution has “led to remarkable progress in clean energy conversion and energy-efficient computing devices,” the researchers write in their paper.

However, controlling the precise properties of the resulting nanoparticles has been difficult. “We know that exsolution can give us stable and active nanoparticles, but the challenging part is really to control it. The novelty of this work is that we’ve found a tool — ion irradiation — that can give us that control,” says Jiayue Wang PhD ’22, first author of the paper. Wang, who conducted the work while earning his PhD in the MIT Department of Nuclear Science and Engineering, is now a postdoc at Stanford University.

Sossina Haile ’86, PhD ’92, the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern University, who was not involved in the current work, says:

“Metallic nanoparticles serve as catalysts in a whole host of reactions, including the important reaction of splitting water to generate hydrogen for energy storage. In this work, Yildiz and colleagues have created an ingenious method for controlling the way that nanoparticles form.”

Haile continues, “the community has shown that exsolution results in structurally stable nanoparticles, but the process is not easy to control, so one doesn’t necessarily get the optimal number and size of particles. Using ion irradiation, this group was able to precisely control the features of the nanoparticles, resulting in excellent catalytic activity for water splitting.”

What they did

The researchers found that aiming a beam of ions at the electrode while simultaneously exsolving metal nanoparticles onto the electrode’s surface allowed them to control several properties of the resulting nanoparticles.

“Through ion-matter interactions, we have successfully engineered the size, composition, density, and location of the exsolved nanoparticles,” the team writes in Energy & Environmental Science.

For example, they could make the particles much smaller — down to 2 billionths of a meter in diameter — than those made using conventional thermal exsolution methods alone. Further, they were able to change the composition of the nanoparticles by irradiating with specific elements. They demonstrated this with a beam of nickel ions that implanted nickel into the exsolved metal nanoparticle. As a result, they demonstrated a direct and convenient way to engineer the composition of exsolved nanoparticles.

“We want to have multi-element nanoparticles, or alloys, because they usually have higher catalytic activity,” Yildiz says. “With our approach, the exsolution target does not have to be dependent on the substrate oxide itself.” Irradiation opens the door to many more compositions. “We can pretty much choose any oxide and any ion that we can irradiate with and exsolve that,” says Yildiz.

The team also found that ion irradiation forms defects in the electrode itself. And these defects provide additional nucleation sites, or places for the exsolved nanoparticles to grow from, increasing the density of the resulting nanoparticles.

Irradiation could also allow extreme spatial control over the nanoparticles. “Because you can focus the ion beam, you can imagine that you could ‘write’ with it to form specific nanostructures,” says Wang. “We did a preliminary demonstration [of that], but we believe it has potential to realize well-controlled micro- and nano-structures.”

The team also showed that the nanoparticles they created with ion irradiation had superior catalytic activity over those created by conventional thermal exsolution alone.

Additional MIT authors of the paper are Kevin B. Woller, a principal research scientist at the Plasma Science and Fusion Center (PSFC), home to the equipment used for ion irradiation; Abinash Kumar PhD ’22, who received his PhD from the Department of Materials Science and Engineering (DMSE) and is now at Oak Ridge National Laboratory; and James M. LeBeau, an associate professor in DMSE. Other authors are Zhan Zhang and Hua Zhou of Argonne National Laboratory, and Iradwikanari Waluyo and Adrian Hunt of Brookhaven National Laboratory.

This work was funded by the OxEon Corp. and MIT’s PSFC. The research also used resources supported by the U.S. Department of Energy Office of Science, MIT’s Materials Research Laboratory, and MIT.nano. The work was performed, in part, at Harvard University through a network funded by the National Science Foundation.

© Image: Jiayue Wang

Artist’s representation of nanoparticles with different compositions created by combining two techniques: metal exsolution and ion irradiation. The different colors represent different elements, such as nickel, that can be implanted into an exsolved metal particle to tailor the particle’s compositions and reactivity.

Team engineers nanoparticles using ion irradiation to advance clean energy and fuel conversion

MIT researchers and colleagues have demonstrated a way to precisely control the size, composition, and other properties of nanoparticles key to the reactions involved in a variety of clean energy and environmental technologies. They did so by leveraging ion irradiation, a technique in which beams of charged particles bombard a material.

They went on to show that nanoparticles created this way have superior performance over their conventionally made counterparts.

“The materials we have worked on could advance several technologies, from fuel cells to generate CO2-free electricity to the production of clean hydrogen feedstocks for the chemical industry [through electrolysis cells],” says Bilge Yildiz, leader of the work and a professor in MIT’s departments of Nuclear Science and Engineering and Materials Science and Engineering.

Critical catalyst

Fuel and electrolysis cells both involve electrochemical reactions through three principal parts: two electrodes (a cathode and anode) separated by an electrolyte. The difference between the two cells is that the reactions involved run in reverse.

The electrodes are coated with catalysts, or materials that make the reactions involved go faster. But a critical catalyst made of metal-oxide materials has been limited by challenges including low durability. “The metal catalyst particles coarsen at high temperatures, and you lose surface area and activity as a result,” says Yildiz, who is also affiliated with the Materials Research Laboratory and is an author of an open-access paper on the work published in the journal Energy & Environmental Science.

Enter metal exsolution, which involves precipitating metal nanoparticles out of a host oxide onto the surface of the electrode. The particles embed themselves into the electrode, “and that anchoring makes them more stable,” says Yildiz. As a result, exsolution has “led to remarkable progress in clean energy conversion and energy-efficient computing devices,” the researchers write in their paper.

However, controlling the precise properties of the resulting nanoparticles has been difficult. “We know that exsolution can give us stable and active nanoparticles, but the challenging part is really to control it. The novelty of this work is that we’ve found a tool — ion irradiation — that can give us that control,” says Jiayue Wang PhD ’22, first author of the paper. Wang, who conducted the work while earning his PhD in the MIT Department of Nuclear Science and Engineering, is now a postdoc at Stanford University.

Sossina Haile ’86, PhD ’92, the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern University, who was not involved in the current work, says:

“Metallic nanoparticles serve as catalysts in a whole host of reactions, including the important reaction of splitting water to generate hydrogen for energy storage. In this work, Yildiz and colleagues have created an ingenious method for controlling the way that nanoparticles form.”

Haile continues, “the community has shown that exsolution results in structurally stable nanoparticles, but the process is not easy to control, so one doesn’t necessarily get the optimal number and size of particles. Using ion irradiation, this group was able to precisely control the features of the nanoparticles, resulting in excellent catalytic activity for water splitting.”

What they did

The researchers found that aiming a beam of ions at the electrode while simultaneously exsolving metal nanoparticles onto the electrode’s surface allowed them to control several properties of the resulting nanoparticles.

“Through ion-matter interactions, we have successfully engineered the size, composition, density, and location of the exsolved nanoparticles,” the team writes in Energy & Environmental Science.

For example, they could make the particles much smaller — down to 2 billionths of a meter in diameter — than those made using conventional thermal exsolution methods alone. Further, they were able to change the composition of the nanoparticles by irradiating with specific elements. They demonstrated this with a beam of nickel ions that implanted nickel into the exsolved metal nanoparticle. As a result, they demonstrated a direct and convenient way to engineer the composition of exsolved nanoparticles.

“We want to have multi-element nanoparticles, or alloys, because they usually have higher catalytic activity,” Yildiz says. “With our approach, the exsolution target does not have to be dependent on the substrate oxide itself.” Irradiation opens the door to many more compositions. “We can pretty much choose any oxide and any ion that we can irradiate with and exsolve that,” says Yildiz.

The team also found that ion irradiation forms defects in the electrode itself. And these defects provide additional nucleation sites, or places for the exsolved nanoparticles to grow from, increasing the density of the resulting nanoparticles.

Irradiation could also allow extreme spatial control over the nanoparticles. “Because you can focus the ion beam, you can imagine that you could ‘write’ with it to form specific nanostructures,” says Wang. “We did a preliminary demonstration [of that], but we believe it has potential to realize well-controlled micro- and nano-structures.”

The team also showed that the nanoparticles they created with ion irradiation had superior catalytic activity over those created by conventional thermal exsolution alone.

Additional MIT authors of the paper are Kevin B. Woller, a principal research scientist at the Plasma Science and Fusion Center (PSFC), home to the equipment used for ion irradiation; Abinash Kumar PhD ’22, who received his PhD from the Department of Materials Science and Engineering (DMSE) and is now at Oak Ridge National Laboratory; and James M. LeBeau, an associate professor in DMSE. Other authors are Zhan Zhang and Hua Zhou of Argonne National Laboratory, and Iradwikanari Waluyo and Adrian Hunt of Brookhaven National Laboratory.

This work was funded by the OxEon Corp. and MIT’s PSFC. The research also used resources supported by the U.S. Department of Energy Office of Science, MIT’s Materials Research Laboratory, and MIT.nano. The work was performed, in part, at Harvard University through a network funded by the National Science Foundation.

© Image: Jiayue Wang

Artist’s representation of nanoparticles with different compositions created by combining two techniques: metal exsolution and ion irradiation. The different colors represent different elements, such as nickel, that can be implanted into an exsolved metal particle to tailor the particle’s compositions and reactivity.

Team engineers nanoparticles using ion irradiation to advance clean energy and fuel conversion

MIT researchers and colleagues have demonstrated a way to precisely control the size, composition, and other properties of nanoparticles key to the reactions involved in a variety of clean energy and environmental technologies. They did so by leveraging ion irradiation, a technique in which beams of charged particles bombard a material.

They went on to show that nanoparticles created this way have superior performance over their conventionally made counterparts.

“The materials we have worked on could advance several technologies, from fuel cells to generate CO2-free electricity to the production of clean hydrogen feedstocks for the chemical industry [through electrolysis cells],” says Bilge Yildiz, leader of the work and a professor in MIT’s departments of Nuclear Science and Engineering and Materials Science and Engineering.

Critical catalyst

Fuel and electrolysis cells both involve electrochemical reactions through three principal parts: two electrodes (a cathode and anode) separated by an electrolyte. The difference between the two cells is that the reactions involved run in reverse.

The electrodes are coated with catalysts, or materials that make the reactions involved go faster. But a critical catalyst made of metal-oxide materials has been limited by challenges including low durability. “The metal catalyst particles coarsen at high temperatures, and you lose surface area and activity as a result,” says Yildiz, who is also affiliated with the Materials Research Laboratory and is an author of an open-access paper on the work published in the journal Energy & Environmental Science.

Enter metal exsolution, which involves precipitating metal nanoparticles out of a host oxide onto the surface of the electrode. The particles embed themselves into the electrode, “and that anchoring makes them more stable,” says Yildiz. As a result, exsolution has “led to remarkable progress in clean energy conversion and energy-efficient computing devices,” the researchers write in their paper.

However, controlling the precise properties of the resulting nanoparticles has been difficult. “We know that exsolution can give us stable and active nanoparticles, but the challenging part is really to control it. The novelty of this work is that we’ve found a tool — ion irradiation — that can give us that control,” says Jiayue Wang PhD ’22, first author of the paper. Wang, who conducted the work while earning his PhD in the MIT Department of Nuclear Science and Engineering, is now a postdoc at Stanford University.

Sossina Haile ’86, PhD ’92, the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern University, who was not involved in the current work, says:

“Metallic nanoparticles serve as catalysts in a whole host of reactions, including the important reaction of splitting water to generate hydrogen for energy storage. In this work, Yildiz and colleagues have created an ingenious method for controlling the way that nanoparticles form.”

Haile continues, “the community has shown that exsolution results in structurally stable nanoparticles, but the process is not easy to control, so one doesn’t necessarily get the optimal number and size of particles. Using ion irradiation, this group was able to precisely control the features of the nanoparticles, resulting in excellent catalytic activity for water splitting.”

What they did

The researchers found that aiming a beam of ions at the electrode while simultaneously exsolving metal nanoparticles onto the electrode’s surface allowed them to control several properties of the resulting nanoparticles.

“Through ion-matter interactions, we have successfully engineered the size, composition, density, and location of the exsolved nanoparticles,” the team writes in Energy & Environmental Science.

For example, they could make the particles much smaller — down to 2 billionths of a meter in diameter — than those made using conventional thermal exsolution methods alone. Further, they were able to change the composition of the nanoparticles by irradiating with specific elements. They demonstrated this with a beam of nickel ions that implanted nickel into the exsolved metal nanoparticle. As a result, they demonstrated a direct and convenient way to engineer the composition of exsolved nanoparticles.

“We want to have multi-element nanoparticles, or alloys, because they usually have higher catalytic activity,” Yildiz says. “With our approach, the exsolution target does not have to be dependent on the substrate oxide itself.” Irradiation opens the door to many more compositions. “We can pretty much choose any oxide and any ion that we can irradiate with and exsolve that,” says Yildiz.

The team also found that ion irradiation forms defects in the electrode itself. And these defects provide additional nucleation sites, or places for the exsolved nanoparticles to grow from, increasing the density of the resulting nanoparticles.

Irradiation could also allow extreme spatial control over the nanoparticles. “Because you can focus the ion beam, you can imagine that you could ‘write’ with it to form specific nanostructures,” says Wang. “We did a preliminary demonstration [of that], but we believe it has potential to realize well-controlled micro- and nano-structures.”

The team also showed that the nanoparticles they created with ion irradiation had superior catalytic activity over those created by conventional thermal exsolution alone.

Additional MIT authors of the paper are Kevin B. Woller, a principal research scientist at the Plasma Science and Fusion Center (PSFC), home to the equipment used for ion irradiation; Abinash Kumar PhD ’22, who received his PhD from the Department of Materials Science and Engineering (DMSE) and is now at Oak Ridge National Laboratory; and James M. LeBeau, an associate professor in DMSE. Other authors are Zhan Zhang and Hua Zhou of Argonne National Laboratory, and Iradwikanari Waluyo and Adrian Hunt of Brookhaven National Laboratory.

This work was funded by the OxEon Corp. and MIT’s PSFC. The research also used resources supported by the U.S. Department of Energy Office of Science, MIT’s Materials Research Laboratory, and MIT.nano. The work was performed, in part, at Harvard University through a network funded by the National Science Foundation.

© Image: Jiayue Wang

Artist’s representation of nanoparticles with different compositions created by combining two techniques: metal exsolution and ion irradiation. The different colors represent different elements, such as nickel, that can be implanted into an exsolved metal particle to tailor the particle’s compositions and reactivity.

Team engineers nanoparticles using ion irradiation to advance clean energy and fuel conversion

MIT researchers and colleagues have demonstrated a way to precisely control the size, composition, and other properties of nanoparticles key to the reactions involved in a variety of clean energy and environmental technologies. They did so by leveraging ion irradiation, a technique in which beams of charged particles bombard a material.

They went on to show that nanoparticles created this way have superior performance over their conventionally made counterparts.

“The materials we have worked on could advance several technologies, from fuel cells to generate CO2-free electricity to the production of clean hydrogen feedstocks for the chemical industry [through electrolysis cells],” says Bilge Yildiz, leader of the work and a professor in MIT’s departments of Nuclear Science and Engineering and Materials Science and Engineering.

Critical catalyst

Fuel and electrolysis cells both involve electrochemical reactions through three principal parts: two electrodes (a cathode and anode) separated by an electrolyte. The difference between the two cells is that the reactions involved run in reverse.

The electrodes are coated with catalysts, or materials that make the reactions involved go faster. But a critical catalyst made of metal-oxide materials has been limited by challenges including low durability. “The metal catalyst particles coarsen at high temperatures, and you lose surface area and activity as a result,” says Yildiz, who is also affiliated with the Materials Research Laboratory and is an author of an open-access paper on the work published in the journal Energy & Environmental Science.

Enter metal exsolution, which involves precipitating metal nanoparticles out of a host oxide onto the surface of the electrode. The particles embed themselves into the electrode, “and that anchoring makes them more stable,” says Yildiz. As a result, exsolution has “led to remarkable progress in clean energy conversion and energy-efficient computing devices,” the researchers write in their paper.

However, controlling the precise properties of the resulting nanoparticles has been difficult. “We know that exsolution can give us stable and active nanoparticles, but the challenging part is really to control it. The novelty of this work is that we’ve found a tool — ion irradiation — that can give us that control,” says Jiayue Wang PhD ’22, first author of the paper. Wang, who conducted the work while earning his PhD in the MIT Department of Nuclear Science and Engineering, is now a postdoc at Stanford University.

Sossina Haile ’86, PhD ’92, the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern University, who was not involved in the current work, says:

“Metallic nanoparticles serve as catalysts in a whole host of reactions, including the important reaction of splitting water to generate hydrogen for energy storage. In this work, Yildiz and colleagues have created an ingenious method for controlling the way that nanoparticles form.”

Haile continues, “the community has shown that exsolution results in structurally stable nanoparticles, but the process is not easy to control, so one doesn’t necessarily get the optimal number and size of particles. Using ion irradiation, this group was able to precisely control the features of the nanoparticles, resulting in excellent catalytic activity for water splitting.”

What they did

The researchers found that aiming a beam of ions at the electrode while simultaneously exsolving metal nanoparticles onto the electrode’s surface allowed them to control several properties of the resulting nanoparticles.

“Through ion-matter interactions, we have successfully engineered the size, composition, density, and location of the exsolved nanoparticles,” the team writes in Energy & Environmental Science.

For example, they could make the particles much smaller — down to 2 billionths of a meter in diameter — than those made using conventional thermal exsolution methods alone. Further, they were able to change the composition of the nanoparticles by irradiating with specific elements. They demonstrated this with a beam of nickel ions that implanted nickel into the exsolved metal nanoparticle. As a result, they demonstrated a direct and convenient way to engineer the composition of exsolved nanoparticles.

“We want to have multi-element nanoparticles, or alloys, because they usually have higher catalytic activity,” Yildiz says. “With our approach, the exsolution target does not have to be dependent on the substrate oxide itself.” Irradiation opens the door to many more compositions. “We can pretty much choose any oxide and any ion that we can irradiate with and exsolve that,” says Yildiz.

The team also found that ion irradiation forms defects in the electrode itself. And these defects provide additional nucleation sites, or places for the exsolved nanoparticles to grow from, increasing the density of the resulting nanoparticles.

Irradiation could also allow extreme spatial control over the nanoparticles. “Because you can focus the ion beam, you can imagine that you could ‘write’ with it to form specific nanostructures,” says Wang. “We did a preliminary demonstration [of that], but we believe it has potential to realize well-controlled micro- and nano-structures.”

The team also showed that the nanoparticles they created with ion irradiation had superior catalytic activity over those created by conventional thermal exsolution alone.

Additional MIT authors of the paper are Kevin B. Woller, a principal research scientist at the Plasma Science and Fusion Center (PSFC), home to the equipment used for ion irradiation; Abinash Kumar PhD ’22, who received his PhD from the Department of Materials Science and Engineering (DMSE) and is now at Oak Ridge National Laboratory; and James M. LeBeau, an associate professor in DMSE. Other authors are Zhan Zhang and Hua Zhou of Argonne National Laboratory, and Iradwikanari Waluyo and Adrian Hunt of Brookhaven National Laboratory.

This work was funded by the OxEon Corp. and MIT’s PSFC. The research also used resources supported by the U.S. Department of Energy Office of Science, MIT’s Materials Research Laboratory, and MIT.nano. The work was performed, in part, at Harvard University through a network funded by the National Science Foundation.

© Image: Jiayue Wang

Artist’s representation of nanoparticles with different compositions created by combining two techniques: metal exsolution and ion irradiation. The different colors represent different elements, such as nickel, that can be implanted into an exsolved metal particle to tailor the particle’s compositions and reactivity.

Simple superconducting device could dramatically cut energy use in computing, other applications

MIT scientists and their colleagues have created a simple superconducting device that could transfer current through electronic devices much more efficiently than is possible today. As a result, the new diode, a kind of switch, could dramatically cut the amount of energy used in high-power computing systems, a major problem that is estimated to become much worse. Even though it is in the early stages of development, the diode is more than twice as efficient as similar ones reported by others. It could even be integral to emerging quantum computing technologies.

The work, which is reported in the July 13 online issue of Physical Review Letters, is also the subject of a news story in Physics Magazine.

“This paper showcases that the superconducting diode is an entirely solved problem from an engineering perspective,” says Philip Moll, director of the Max Planck Institute for the Structure and Dynamics of Matter in Germany. Moll was not involved in the work. “The beauty of [this] work is that [Moodera and colleagues] obtained record efficiencies without even trying [and] their structures are far from optimized yet.”

“Our engineering of a superconducting diode effect that is robust and can operate over a wide temperature range in simple systems can potentially open the door for novel technologies,” says Jagadeesh Moodera, leader of the current work and a senior research scientist in MIT’s Department of Physics. Moodera is also affiliated with the Materials Research Laboratory, the Francis Bitter Magnet Laboratory, and the Plasma Science and Fusion Center (PSFC).

The nanoscopic rectangular diode — about 1,000 times thinner than the diameter of a human hair — is easily scalable. Millions could be produced on a single silicon wafer.

Toward a superconducting switch

Diodes, devices that allow current to travel easily in one direction but not in the reverse, are ubiquitous in computing systems. Modern semiconductor computer chips contain billions of diode-like devices known as transistors. However, these devices can get very hot due to electrical resistance, requiring vast amounts of energy to cool the high-power systems in the data centers behind myriad modern technologies, including cloud computing. According to a 2018 news feature in Nature, these systems could use nearly 20 percent of the world’s power in 10 years.

As a result, work toward creating diodes made of superconductors has been a hot topic in condensed matter physics. That’s because superconductors transmit current with no resistance at all below a certain low temperature (the critical temperature), and are therefore much more efficient than their semiconducting cousins, which have noticeable energy loss in the form of heat.

Until now, however, other approaches to the problem have involved much more complicated physics. “The effect we found is due [in part] to a ubiquitous property of superconductors that can be realized in a very simple, straightforward manner. It just stares you in the face,” says Moodera.

Says Moll of the Max Planck Institute, “The work is an important counterpoint to the current fashion to associate superconducting diodes [with] exotic physics, such as finite-momentum pairing states. While in reality, a superconducting diode is a common and widespread phenomenon present in classical materials, as a result of certain broken symmetries.”

A somewhat serendipitous discovery

In 2020 Moodera and colleagues observed evidence of an exotic particle pair known as Majorana fermions. These particle pairs could lead to a new family of topological qubits, the building blocks of quantum computers. While pondering approaches to creating superconducting diodes, the team realized that the material platform they developed for the Majorana work might also be applied to the diode problem.

They were right. Using that general platform, they developed different iterations of superconducting diodes, each more efficient than the last. The first, for example, consisted of a nanoscopically thin layer of vanadium, a superconductor, which was patterned into a structure common to electronics (the Hall bar). When they applied a tiny magnetic field comparable to the Earth’s magnetic field, they saw the diode effect — a giant polarity dependence for current flow.

They then created another diode, this time layering a superconductor with a ferromagnet (a ferromagnetic insulator in their case), a material that produces its own tiny magnetic field. After applying a tiny magnetic field to magnetize the ferromagnet so that it produces its own field, they found an even bigger diode effect that was stable even after the original magnetic field was turned off.

Ubiquitous properties

The team went on to figure out what was happening.

In addition to transmitting current with no resistance, superconductors also have other, less well-known but just as ubiquitous properties. For example, they don’t like magnetic fields getting inside. When exposed to a tiny magnetic field, superconductors produce an internal supercurrent that induces its own magnetic flux that cancels the external field, thereby maintaining their superconducting state. This phenomenon, known as the Meissner screening effect, can be thought of as akin to our bodies’ immune system releasing antibodies to fight the infection of bacteria and other pathogens. This works, however, only up to some limit. Similarly, superconductors cannot entirely keep out large magnetic fields.

The diodes the team created make use of this universal Meissner screening effect. The tiny magnetic field they applied — either directly, or through the adjacent ferromagnetic layer — activates the material’s screening current mechanism for expelling the external magnetic field and maintaining superconductivity.

The team also found that another key factor in optimizing these superconductor diodes is tiny differences between the two sides, or edges, of the diode devices. These differences “create some sort of asymmetry in the way the magnetic field enters the superconductor,” Moodera says.

By engineering their own form of edges on diodes to optimize these differences — for example, one edge with sawtooth features, while the other edge not intentionally altered — the team found that they could increase the efficiency from 20 percent to more than 50 percent. This discovery opens the door for devices whose edges could be “tuned” for even higher efficiencies, Moodera says.

In sum, the team discovered that the edge asymmetries within superconducting diodes, the ubiquitous Meissner screening effect found in all superconductors, and a third property of superconductors known as vortex pinning all came together to produce the diode effect.

“It is fascinating to see how inconspicuous yet ubiquitous factors can create a significant effect in observing the diode effect,” says Yasen Hou, first author of the paper and a postdoc at the Francis Bitter Magnet Laboratory and the PSFC. “What’s more exciting is that [this work] provides a straightforward approach with huge potential to further improve the efficiency.”

Christoph Strunk is a professor at the University of Regensburg in Germany. Says Strunk, who was not involved in the research, “the present work demonstrates that the supercurrent in simple superconducting strips can become nonreciprocal. Moreover, when combined with a ferromagnetic insulator, the diode effect can even be maintained in the absence of an external magnetic field. The rectification direction can be programmed by the remnant magnetization of the magnetic layer, which may have high potential for future applications. The work is important and appealing both from the basic research and from the applications point of view.”

Teenage contributors

Moodera noted that the two researchers who created the engineered edges did so while still in high school during a summer at Moodera’s lab. They are Ourania Glezakou-Elbert of Richland, Washington, who will be going to Princeton University this fall, and Amith Varambally of Vestavia Hills, Alabama, who will be entering Caltech.

Says Varambally, “I didn't know what to expect when I set foot in Boston last summer, and certainly never expected to [be] a coauthor in a Physical Review Letters paper.

“Every day was exciting, whether I was reading dozens of papers to better understand the diode phenomena, or operating machinery to fabricate new diodes for study, or engaging in conversations with Ourania, Dr. Hou, and Dr. Moodera about our research.

“I am profoundly grateful to Dr. Moodera and Dr. Hou for providing me with the opportunity to work on such a fascinating project, and to Ourania for being a great research partner and friend.”

In addition to Moodera and Hou, corresponding authors of the paper are professors Patrick A. Lee of the MIT Department of Physics and Akashdeep Kamra of Autonomous University of Madrid. Other authors from MIT are Liang Fu and Margarita Davydova of the Department of Physics, and Hang Chi, Alessandro Lodesani, and Yingying Wu, all of the Francis Bitter Magnet Laboratory and the Plasma Science and Fusion Center. Chi is also affiliated with the U.S. Army CCDC Research Laboratory.

Authors also include Fabrizio Nichele, Markus F. Ritter, and Daniel Z. Haxwell of IBM Research Europe; Stefan Ilić of Materials Physics Center (CFM-MPC); and F. Sebastian Bergeret of CFM-MPC and Donostia International Physics Center.

This work was supported by the Air Force Office of Sponsored Research, the Office of Naval Research, the National Science Foundation, and the Army Research Office. Additional funders are the European Research Council, the European Union’s Horizon 2020 Research and Innovation Framework Programme, the Spanish Ministry of Science and Innovation, the A. v. Humboldt Foundation, and the Department of Energy’s Office of Basic Sciences.

© Image courtesy of A. Varambally, Y-S. Hou, and H. Chi.

In one design of the new superconducting device, the diode consists of a ferromagnetic strip (pink) atop a superconducting thin film (grey). The team also identified the key factors behind the resulting current that travels in only one direction with no resistance.
❌
❌