FreshRSS

Normální zobrazení

Jsou dostupné nové články, klikněte pro obnovení stránky.
PředevčíremHlavní kanál
  • ✇IEEE Spectrum
  • Gladys West: The Hidden Figure Behind GPSWillie D. Jones
    Schoolchildren around the world are told that they have the potential to be great, often with the cheery phrase: “The sky’s the limit!” Gladys West took those words literally. While working for four decades as a mathematician and computer programmer at the U.S. Naval Proving Ground (now the Naval Surface Warfare Center) in Dahlgren, Va., she prepared the way for a satellite constellation in the sky that became an indispensable part of modern life: the Global Positioning System, or GPS. Th
     

Gladys West: The Hidden Figure Behind GPS

30. Červenec 2024 v 20:00


Schoolchildren around the world are told that they have the potential to be great, often with the cheery phrase: “The sky’s the limit!”

Gladys West took those words literally.

While working for four decades as a mathematician and computer programmer at the U.S. Naval Proving Ground (now the Naval Surface Warfare Center) in Dahlgren, Va., she prepared the way for a satellite constellation in the sky that became an indispensable part of modern life: the Global Positioning System, or GPS.

The second Black woman to ever work at the proving ground, West led a group of analysts who used satellite sensor data to calculate the shape of the Earth and the orbital routes around it. Her meticulous calculations and programming work established the flight paths now used by GPS satellites, setting the stage for navigation and positioning systems on which the world has come to rely.

For decades, West’s contributions went unacknowledged. But she has begun receiving overdue recognition. In 2018 she was inducted into the U.S. Air Force Space and Missile Pioneers Hall of Fame. In 2021 the International Academy of Digital Arts and Sciences presented her its Webby Lifetime Achievement Award, while the U.K. Royal Academy of Engineering gave her the Prince Philip Medal, the organization’s highest individual honor.

West was presented the 2024 IEEE President’s Award for “mathematical modeling and development of satellite geodesy models that played a pivotal role in the development of the Global Positioning System.” The award is sponsored by IEEE.

How the “hidden figure” overcame barriers

West’s path to becoming a technology professional and an IEEE honoree was an unlikely one. Born in 1930 in Sutherland, Va., she grew up working on her family’s farm. To supplement the family’s income, her mother worked at a tobacco factory and her father was employed by a railroad company.

Physical toil in the hot sun from daybreak until sundown with paltry financial returns, West says, made her determined to do something other than farming.

Every day when she ventured into the fields to sow or harvest crops with her family, her thoughts were on the little red schoolhouse beyond the edge of the farm. She recalls gladly making the nearly 5-kilometer trek from her house, through the woods and over streams, to reach the one-room school.

She knew that postsecondary education was her ticket out of farm life, so throughout her school years she made sure she was a standout student and a model of focus and perseverance.

Her parents couldn’t afford to pay for her college education, but as valedictorian of her high school class, she earned a full-tuition scholarship from the state of Virginia. Money she earned as a babysitter paid for her room and board.

West decided to pursue a degree in mathematics at Virginia State College (now Virginia State University), a historically Black school in Petersburg.

At the time, the field was dominated by men. She earned a bachelor’s degree in the subject in 1952 and became a schoolteacher in Waverly, Va. After two years in the classroom, she returned to Virginia State to pursue a master’s degree in mathematics, which she earned in 1955.

black and white image of a woman sitting at a desk writing on a pad of paper Gladys West at her desk, meticulously crunching numbers manually in the era before computers took over such tasks.Gladys West

Setting the groundwork for GPS

West began her career at the Naval Proving Ground in early 1956. She was hired as a mathematician, joining a cadre of workers who used linear algebra, calculus, and other methods to manually solve complex problems such as differential equations. Their mathematical wizardry was used to handle trajectory analysis for ships and aircraft as well as other applications.

She was one of four Black employees at the facility, she says, adding that her determination to prove the capability of Black professionals drove her to excel.

As computers were introduced into the Navy’s operations in the 1960s, West became proficient in Fortran IV. The programming language enabled her to use the IBM 7030—the world’s fastest supercomputer at the time—to process data at an unprecedented rate.

Because of her expertise in mathematics and computer science, she was appointed director of projects that extracted valuable insights from satellite data gathered during NASA missions. West and her colleagues used the data to create ever more accurate models of the geoid—the shape of the Earth—factoring in gravitational fields and the planet’s rotation.

One such mission was Seasat, which lasted from June to October 1978. Seasat was launched into orbit to test oceanographic sensors and gain a better understanding of Earth’s seas using the first space-based synthetic aperture radar (SAR) system, which enabled the first remote sensing of the Earth’s oceans.

SAR can acquire high-resolution images at night and can penetrate through clouds and rain. Seasat captured many valuable 2D and 3D images before a malfunction caused the satellite to be taken down.

Enough data was collected from Seasat for West’s team to refine existing geodetic models to better account for gravity and magnetic forces. The models were important for precisely mapping the Earth’s topography, determining the orbital routes that would later be used by GPS satellites, as well as documenting the spatial relationships that now let GPS determine exactly where a receiver is.

In 1986 she published the “Data Processing System Specifications for the GEOSAT Satellite Radar Altimeter” technical report. It contained new calculations that could make her geodetic models more accurate. The calculations were made possible by data from the radio altimeter on the GEOSAT, a Navy satellite that went into orbit in March 1985.

West’s career at Dahlgren lasted 42 years. By the time she retired in 1998, all 24 satellites in the GPS constellation had been launched to help the world keep time and handle navigation. But her role was largely unknown.

A model of perseverance

Neither an early bout of imposter syndrome nor the racial tensions that were an everyday element of her work life during the height of the Civil Rights Movement were able to knock her off course, West says.

In the early 1970s, she decided that her career advancement was not proceeding as smoothly as she thought it should, so she decided to go to graduate school part time for another degree. She considered pursuing a doctorate in mathematics but realized, “I already had all the technical credentials I would ever need for my work for the Navy.” Instead, to solidify her skills as a manager, she earned a master’s degree in 1973 in public administration from the University of Oklahoma in Norman.

After retiring from the Navy, she earned a doctorate in public administration in 2000 from Virginia Tech. Although she was recovering from a stroke at the time that affected her physical abilities, she still had the same drive to pursue an education that had once kept her focused on a little red schoolhouse.

A formidable legacy

West’s contributions have had a lasting impact on the fields of mathematics, geodesy, and computer science. Her pioneering efforts in a predominantly male and racially segregated environment set a precedent for future generations of female and minority scientists.

West says her life and career are testaments to the power of perseverance, skill, and dedication—or “stick-to-it-iveness,” to use her parlance. Her story continues to inspire people who strive to push boundaries. She has shown that the sky is indeed not the limit but just the beginning.

  • ✇IEEE Spectrum
  • Tsunenobu Kimoto Leads the Charge in Power DevicesWillie D. Jones
    Tsunenobu Kimoto, a professor of electronic science and engineering at Kyoto University, literally wrote the book on silicon carbide technology. Fundamentals of Silicon Carbide Technology, published in 2014, covers properties of SiC materials, processing technology, theory, and analysis of practical devices. Kimoto, whose silicon carbide research has led to better fabrication techniques, improved the quality of wafers and reduced their defects. His innovations, which made silicon carbide semi
     

Tsunenobu Kimoto Leads the Charge in Power Devices

23. Červen 2024 v 20:00


Tsunenobu Kimoto, a professor of electronic science and engineering at Kyoto University, literally wrote the book on silicon carbide technology. Fundamentals of Silicon Carbide Technology, published in 2014, covers properties of SiC materials, processing technology, theory, and analysis of practical devices.

Kimoto, whose silicon carbide research has led to better fabrication techniques, improved the quality of wafers and reduced their defects. His innovations, which made silicon carbide semiconductor devices more efficient and more reliable and thus helped make them commercially viable, have had a significant impact on modern technology.

Tsunenobu Kimoto


Employer

Kyoto University

Title

Professor of electronic science and engineering

Member grade

Fellow

Alma mater

Kyoto University

For his contributions to silicon carbide material and power devices, the IEEE Fellow was honored with this year’s IEEE Andrew S. Grove Award, sponsored by the IEEE Electron Devices Society.

Silicon carbide’s humble beginnings

Decades before a Tesla Model 3 rolled off the assembly line with an SiC inverter, a small cadre of researchers, including Kimoto, foresaw the promise of silicon carbide technology. In obscurity they studied it and refined the techniques for fabricating power transistors with characteristics superior to those of the silicon devices then in mainstream use.

Today MOSFETs and other silicon carbide transistors greatly reduce on-state loss and switching losses in power-conversion systems, such as the inverters in an electric vehicle used to convert the battery’s direct current to the alternating current that drives the motor. Lower switching losses make the vehicles more efficient, reducing the size and weight of their power electronics and improving power-train performance. Silicon carbide–based chargers, which convert alternating current to direct current, provide similar improvements in efficiency.

But those tools didn’t just appear. “We had to first develop basic techniques such as how to dope the material to make n-type and p-type semiconductor crystals,” Kimoto says. N-type crystals’ atomic structures are arranged so that electrons, with their negative charges, move freely through the material’s lattice. Conversely, the atomic arrangement of p-type crystals’ contains positively charged holes.

Kimoto’s interest in silicon carbide began when he was working on his Ph.D. at Kyoto University in 1990.

“At that time, few people were working on silicon carbide devices,” he says. “And for those who were, the main target for silicon carbide was blue LED.

“There was hardly any interest in silicon carbide power devices, like MOSFETs and Schottky barrier diodes.”

Kimoto began by studying how SiC might be used as the basis of a blue LED. But then he read B. Jayant Baliga’s 1989 paper “Power Semiconductor Device Figure of Merit for High-Frequency Applications” in IEEE Electron Device Letters, and he attended a presentation by Baliga, the 2014 IEEE Medal of Honor recipient, on the topic.

“I was convinced that silicon carbide was very promising for power devices,” Kimoto says. “The problem was that we had no wafers and no substrate material,” without which it was impossible to fabricate the devices commercially.

In order to get silicon carbide power devices, “researchers like myself had to develop basic technology such as how to dope the material to make p-type and n-type crystals,” he says. “There was also the matter of forming high-quality oxides on silicon carbide.” Silicon dioxide is used in a MOSFET to isolate the gate and prevent electrons from flowing into it.

The first challenge Kimoto tackled was producing pure silicon carbide crystals. He decided to start with carborundum, a form of silicon carbide commonly used as an abrasive. Kimoto took some factory waste materials—small crystals of silicon carbide measuring roughly 5 millimeters by 8 mm­—and polished them.

He found he had highly doped n-type crystals. But he realized having only highly doped n-type SiC would be of little use in power applications unless he also could produce lightly doped (high purity) n-type and p-type SiC.

Connecting the two material types creates a depletion region straddling the junction where the n-type and p-type sides meet. In this region, the free, mobile charges are lost because of diffusion and recombination with their opposite charges, and an electric field is established that can be exploited to control the flow of charges across the boundary.

“Silicon carbide is a family with many, many brothers.”

By using an established technique, chemical vapor deposition, Kimoto was able to grow high-purity silicon carbide. The technique grows SiC as a layer on a substrate by introducing gasses into a reaction chamber.

At the time, silicon carbide, gallium nitride, and zinc selenide were all contenders in the race to produce a practical blue LED. Silicon carbide, Kimoto says, had only one advantage: It was relatively easy to make a silicon carbide p-n junction. Creating p-n junctions was still difficult to do with the other two options.

By the early 1990s, it was starting to become clear that SiC wasn’t going to win the blue-LED sweepstakes, however. The inescapable reality of the laws of physics trumped the SiC researchers’ belief that they could somehow overcome the material’s inherent properties. SiC has what is known as an indirect band gap structure, so when charge carriers are injected, the probability of the charges recombining and emitting photons is low, leading to poor efficiency as a light source.

While the blue-LED quest was making headlines, many low-profile advances were being made using SiC for power devices. By 1993, a team led by Kimoto and Hiroyuki Matsunami demonstrated the first 1,100-volt silicon carbide Schottky diodes, which they described in a paper in IEEE Electron Device Letters. The diodes produced by the team and others yielded fast switching that was not possible with silicon diodes.

“With silicon p-n diodes,” Kimoto says, “we need about a half microsecond for switching. But with a silicon carbide, it takes only 10 nanoseconds.”

The ability to switch devices on and off rapidly makes power supplies and inverters more efficient because they waste less energy as heat. Higher efficiency and less heat also permit designs that are smaller and lighter. That’s a big deal for electric vehicles, where less weight means less energy consumption.

Kimoto’s second breakthrough was identifying which form of the silicon carbide material would be most useful for electronics applications.

“Silicon carbide is a family with many, many brothers,” Kimoto says, noting that more than 100 variants with different silicon-carbon atomic structures exist.

The 6H-type silicon carbide was the default standard phase used by researchers targeting blue LEDs, but Kimoto discovered that the 4H-type has much better properties for power devices, including high electron mobility. Now all silicon carbide power devices and wafer products are made with the 4H-type.

Silicon carbide power devices in electric vehicles can improve energy efficiency by about 10 percent compared with silicon, Kimoto says. In electric trains, he says, the power required to propel the cars can be cut by 30 percent compared with those using silicon-based power devices.

Challenges remain, he acknowledges. Although silicon carbide power transistors are used in Teslas, other EVs, and electric trains, their performance is still far from ideal because of defects present at the silicon dioxide–SiC interface, he says. The interface defects lower the performance and reliability of MOS-based transistors, so Kimoto and others are working to reduce the defects.

A career sparked by semiconductors

When Kimoto was an only child growing up in Wakayama, Japan, near Osaka, his parents insisted he study medicine, and they expected him to live with them as an adult. His father was a garment factory worker; his mother was a homemaker. His move to Kyoto to study engineering “disappointed them on both counts,” he says.

His interest in engineering was sparked, he recalls, when he was in junior high school, and Japan and the United States were competing for semiconductor industry supremacy.

At Kyoto University, he earned bachelor’s and master’s degrees in electrical engineering, in 1986 and 1988. After graduating, he took a job at Sumitomo Electric Industries’ R&D center in Itami. He worked with silicon-based materials there but wasn’t satisfied with the center’s research opportunities.

He returned to Kyoto University in 1990 to pursue his doctorate. While studying power electronics and high-temperature devices, he also gained an understanding of material defects, breakdown, mobility, and luminescence.

“My experience working at the company was very valuable, but I didn’t want to go back to industry again,” he says. By the time he earned his doctorate in 1996, the university had hired him as a research associate.

He has been there ever since, turning out innovations that have helped make silicon carbide an indispensable part of modern life.

Growing the silicon carbide community at IEEE

Kimoto joined IEEE in the late 1990s. An active volunteer, he has helped grow the worldwide silicon carbide community.

He is an editor of IEEE Transactions on Electron Devices, and he has served on program committees for conferences including the International Symposium on Power Semiconductor Devices and ICs and the IEEE Workshop on Wide Bandgap Power Devices and Applications.

“Now when we hold a silicon carbide conference, more than 1,000 people gather,” he says. “At IEEE conferences like the International Electron Devices Meeting or ISPSD, we always see several well-attended sessions on silicon carbide power devices because more IEEE members pay attention to this field now.”

  • ✇IEEE Spectrum
  • AI and DEI Spotlighted at IEEE’s Futurist SummitJoanna Goodrich
    This year’s IEEE Vision, Innovation, and Challenges Summit and Honors Ceremony, held on 2 and 3 May in Boston, celebrated pioneers in engineering who have developed technologies that changed people’s lives, such as the Internet and GPS. The event also included a trip to the headquarters of cloud service provider Akamai Technologies. Here are highlights of the sessions, which are available on IEEE.tv.Akamai hosted a panel discussion on 2 May on innovation, moderated by Robert Blumoff, the company
     

AI and DEI Spotlighted at IEEE’s Futurist Summit

31. Květen 2024 v 20:00


This year’s IEEE Vision, Innovation, and Challenges Summit and Honors Ceremony, held on 2 and 3 May in Boston, celebrated pioneers in engineering who have developed technologies that changed people’s lives, such as the Internet and GPS. The event also included a trip to the headquarters of cloud service provider Akamai Technologies.

Here are highlights of the sessions, which are available on IEEE.tv.

Akamai hosted a panel discussion on 2 May on innovation, moderated by Robert Blumoff, the company’s executive vice president and CTO. The panel featured IEEE Senior Member Simay Akar, IEEE Life Fellow Deepak Divan, and IEEE Fellows Andrea Goldsmith and Tsu-Jae King Liu. Akar is the founder and CEO of AK Energy Consulting, which helps companies meet their sustainability goals. Divan heads Georgia Tech’s Center for Distributed Energy. Goldsmith is Princeton’s dean of engineering and applied sciences, and King Liu is the dean of the University of California, Berkeley’s College of Engineering.

The panelists were asked about what or who inspired them to pursue a career in engineering, as well as their thoughts on continuing education and diversity, equity, and inclusion.

Most said they were inspired to become engineers by a parent. Goldsmith, the recipient of this year’s IEEE James H. Mulligan Jr. Education Medal, credits her father. He was a mechanical engineering professor at UC Berkeley and suggested she consider majoring in engineering because she excelled in math and science in high school.

“When I was young, I didn’t really understand what being an engineer meant,” Goldsmith said at the panel. Because her parents were divorced and she didn’t see her father often, she thought he drove trains. It wasn’t until she was at UC Berkeley, she said, that she realized how technology could change people’s lives for the better. That’s what pushed her to follow in her father’s footsteps.

When asked what keeps them motivated to stay in the engineering field, King Liu said that it’s IEEE’s mission of developing technology for the benefit of humanity. She is this year’s IEEE Founders Medal recipient.

“Diversity is about excellence. The biggest battle is convincing people who don’t believe that diversity has a positive impact on teams and companies.” —Andrea Goldsmith

“Engineering work is done for people and by people,” she said. “I draw inspiration from not only the people we serve, but also the people behind the technology.” The panelists also spoke about the importance of continuing education. “Learning is a lifelong process,” King Liu said. “Engineers need to seek out learning opportunities, whether it’s from having a design fail or from more experienced engineers in their field of interest.”

Diversity, equity, and inclusion was a hot discussion topic. “Diversity is about excellence,” Goldsmith said. “The biggest battle is convincing people who don’t believe that diversity has a positive impact on teams and companies.

“Another issue is finding ways to bring in diverse talent and helping them achieve their full potential,” she added. “One of the things I’m most proud of is the work I’ve done with IEEE on DEI.”

Goldsmith helped launch the IEEE Diversity and Inclusion Committee and is its past chair. Established in 2022 by the IEEE Board of Directors, the committee revised several policies, procedures, and bylaws to ensure that members have a safe and inclusive place for collegial discourse and that all feel welcome. It also launched a website.

group of 3 people standing for a portrait, middle person with a medal around their neck Robert E. Kahn proudly displays his IEEE Medal of Honor at this year’s IEEE Honors Ceremony. He is accompanied by IEEE President-Elect Kathleen Kramer and IEEE President Tom Couglin.Robb Cohen Photography & Video

Career advice and the role of AI in society

The IEEE Vision, Innovation, and Challenges Summit got underway on 3 May at the Encore Boston Harbor. It featured a “fireside chat” with Robert E. Kahn followed by discussions with panels of award recipients on topics such as career advice and concerns related to artificial intelligence.

Kahn was interviewed by Caroline Hyde, a business and technology journalist. Widely known as one of the “fathers of the Internet,” he is this year’s IEEE Medal of Honor recipient for “pioneering technical and leadership contributions in packet communication technologies and foundations of the Internet.”

The IEEE Life Fellow reminisced about his experience collaborating with Vint Cerf on the design of the Transmission Control Protocol and the Internet Protocol. Cerf, an IEEE Life Fellow, is another father of the Internet and the 2023 IEEE Medal of Honor recipient.

While working as a program manager in the U.S. Defense Advanced Research Projects Agency’s information processing techniques office in 1973, Kahn and Cerf designed the Internet’s core architecture.

One audience member asked Kahn how engineers can create opportunities for young people to collaborate like he and Cerf did. Kahn said that it begins with having a problem to solve, and then thinking about it holistically. He also advised students and young professionals to partner with others when such opportunities arise.

The conversation on career advice continued at the Innovation and Collaboration in Leading Technology Laboratories panel. Panelists and IEEE Fellows Eric Evans, Anthony Vetro, and Peter Vetter offered insights on how to be a successful researcher.

It’s important to identify the right problem and develop a technology to solve it, said Evans, director of MIT Lincoln Laboratory.

When asked what qualities are important for job candidates to showcase when interviewing for a position, Vetro said he looks for employees who are willing to collaborate and are self-driven. Vetro is president and CEO of Mitsubishi Electric Research Labs in Cambridge, Mass. He also stressed the importance of learning how to fail.

During the AI and Society: Building a Future with Responsible Innovation session, Juraj Corba, Christopher D. Manning, Renard T. Jenkins, and IEEE Fellow Claire Tomlin discussed how the technology could affect a variety of fields. They agreed the technology is unlikely to replace humans in the workforce.

“People need to think of AI systems as tools—like what Photoshop is to a photographer.”- Renard T. Jenkins

“People need to think of AI systems as tools—like what Photoshop is to a photographer,” said Jenkins, president of consulting firm I2A2 Technologies, Labs and Studios.

“AI doesn’t have learning and adaptability [capabilities] like humans do,” Manning added. The director of Stanford’s Artificial Intelligence Laboratory is this year’s IEEE John von Neumann Medal recipient. “But there is a good role for technology—it can be life-changing for people.” One example he cited was Neuralink’s brain implant, which would enable a person to control a computer “just by thinking,” according to the startup’s founder, Elon Musk.

ChatGPT, a generative AI program, has become a hot topic among educators since its launch two years ago, said panel moderator Armen Pischdotchian, data scientist at IBM in Cambridge, Mass. Tomlin, chair of the electrical engineering and computer science department at UC Berkeley, said AI will make education more interactive and provide a better experience. “It will help both students and educators,” said the recipient of this year’s IEEE Mildred Dresselhaus Medal.

Pioneers of assistive technology, GPS, and the Internet

The highlight of the evening was the Honors Ceremony, which recognized those who had developed technologies such as assistive robots, GPS, and the Internet.

The IEEE Spectrum Technology in the Service of Society Award went to startup Hello Robot, headquartered in Atlanta, for its Stretch robot. The machine gives those with a severe disability, such as paralysis, the ability to maintain their independence while living at home. For example, users can operate the robot to feed themselves, scratch an itch, or cover themselves with a blanket.

The machine consists of a mobile platform with a single arm that moves up and down a retractable pole. A wrist joint at the end of the arm bends back and forth and controls a gripper, which can grasp nearby objects. Sensors mounted at the base of the arm and a camera located at the top of the pole provide the sensing needed to move around from room to room, avoid obstacles, and pick up small items such as books, eating utensils, and pill bottles.

More than six billion people around the world use GPS to navigate their surroundings, according to GPS World. The technology wouldn’t have been possible without Gladys West, who contributed to the mathematical modeling of the shape of the Earth. While working at the Naval Surface Warfare Center, in Dahlgren, Va., she conducted seminal work on satellite geodesy models that was pivotal in the development of the GPS. West, who is 93, retired in 1998 after working at the center for 42 years. For her contributions, she received the IEEE President’s Award.

The ceremony concluded with the presentation of the IEEE Medal of Honor to Bob Kahn, who received a standing ovation.

“This is the honor of my career,” he said. He ended his speech saying that he “hasn’t stopped yet and still has more to do.”

  • ✇IEEE Spectrum
  • Princeton Engineering Dean Hailed as IEEE Top EducatorKathy Pretz
    By all accounts, Andrea J. Goldsmith is successful. The wireless communications pioneer is Princeton’s dean of engineering and applied sciences. She has launched two prosperous startups. She has had a long career in academia, is a science advisor to the U.S. president, and sits on the boards of several major companies. So it’s surprising to learn that she almost dropped out in her first year of the engineering program at the University of California, Berkeley. “By the end of my first year,
     

Princeton Engineering Dean Hailed as IEEE Top Educator

23. Květen 2024 v 21:00


By all accounts, Andrea J. Goldsmith is successful. The wireless communications pioneer is Princeton’s dean of engineering and applied sciences. She has launched two prosperous startups. She has had a long career in academia, is a science advisor to the U.S. president, and sits on the boards of several major companies. So it’s surprising to learn that she almost dropped out in her first year of the engineering program at the University of California, Berkeley.

“By the end of my first year, I really thought I didn’t belong in engineering, because I wasn’t doing well, and nobody thought I should be there,” acknowledges the IEEE Fellow. “During the summer break, I dusted myself off, cut down my hours from full time to part time at my job, and decided I wasn’t going to let anybody but me decide whether I should be an engineer or not.”

Andrea J. Goldsmith


Employer

Princeton

Title

Dean of engineering and applied sciences

Member Grade

Fellow

Alma Mater

University of California, Berkeley

Major Recognitions

2024 IEEE Mulligan Education Medal

2024 National Inventors Hall of Fame inductee

2020 Marconi Prize

2018 IEEE Eric E. Sumner Award

Royal Academy of Engineering International Fellow

National Academy of Engineering Member


She kept that promise and earned a bachelor’s in engineering mathematics, then master’s and doctorate degrees in electrical engineering from UC Berkeley. She went on to teach engineering at Stanford for more than 20 years. Her development of foundational mathematical approaches for increasing the capacity, speed, and range of wireless systems—which is what her two startups are based on—have earned her financial rewards and several recognitions including the Marconi Prize, IEEE awards for communications technology, and induction into the National Inventors Hall of Fame.

But for all the honors Goldsmith has received, the one she says she cherishes most is the IEEE James H. Mulligan, Jr. Education Medal. She received this year’s Mulligan award “for educating, mentoring, and inspiring generations of students, and for authoring pioneering textbooks in advanced digital communications.” The award is sponsored by MathWorks, Pearson Education, and the IEEE Life Members Fund.

“The greatest joy of being a professor is the young people who we work with—particularly my graduate students and postdocs. I believe all my success as an academic is due to them,” she says. “They are the ones who came with the ideas, and had the passion, grit, resilience, and creativity to partner with me in creating my entire research portfolio.

“Mentoring young people means mentoring all of them, not just their professional dimensions,” she says. “To be recognized in the citation that I’ve inspired, mentored, and educated generations of students fills my heart with joy.”

The importance of mentors

Growing up in Los Angeles, Goldsmith was interested in European politics and history as well as culture and languages. In her senior year of high school, she decided to withdraw to travel around Europe, and she earned a high school equivalency diploma.

Because she excelled in math and science in high school, her father—a mechanical engineering professor at UC Berkeley—suggested she consider majoring in engineering. When she returned to the states, she took her father’s advice and enrolled in UC Berkeley’s engineering program. She didn’t have all the prerequisites, so she had to take some basic math and physics courses. She also took classes in languages and philosophy.

In addition to being a full-time student, Goldsmith worked a full-time job as a waitress to pay her own way through college because, she says, “I didn’t want my dad to influence what I was going to study because he was paying for it.”

Her grades suffered from the stress of juggling school and work. In addition, being one of the few female students in the program, she says, she encountered a lot of implicit and explicit bias by her professors and classmates. Her sense of belonging also suffered, because there were no female faculty members and few women teaching assistants in the engineering program.


“I don’t believe that engineering as a profession can achieve its full potential or can solve the wicked challenges facing society with technology if we don’t have diverse people who can contribute to those solutions.”


“There was an attitude that if the women weren’t doing great then they should pick another major. Whereas if the guys weren’t doing great, that was fine,” she says. “It’s a societal message that if you don’t see women or diverse people in your program, you think ‘maybe it isn’t for me, maybe I don’t belong here.’ That’s reinforced by the implicit bias of the faculty and your peers.”

This and her poor grades led her to consider dropping out of the engineering major. But during her sophomore year, she began to turn things around. She focused on the basics courses, learned better study habits, and cut back the hours at her job.

“I realized that I could be an engineering major if that’s what I wanted. That was a big revelation,” she says. Plus, she admits, her political science classes were becoming boring compared with her engineering courses. She decided that anything she could do with a political science degree she could do with an engineering degree, but not vice versa, so she stuck with engineering.

She credits two mentors for encouraging her to stay in the program. One was Elizabeth J. Strouse, Goldsmith’s linear algebra teaching assistant and the first woman she met at the school who was pursuing a STEM career. She became Goldsmith’s role model and friend. Strouse is now a math professor at the Institut de Matheématique at the University of Bordeaux, in France.

The other was her undergraduate advisor, Aram J. Thomasian. The professor of statistics and electrical engineering advised Goldsmith to apply her mathematical knowledge to either communications or information theory.

“Thomasian absolutely pegged an area that inspired me and also had really exciting practical applications,” she says. “That goes to show how early mentors can really make a difference in steering young people in the right direction.”

After graduating in 1986 with a bachelor’s degree in engineering mathematics, Goldsmith spent a few years working in industry before returning to get her graduate degrees. She began her long academic career in 1994 as an assistant professor of engineering at Caltech. She joined Stanford’s electrical engineering faculty in 1999 and left for Princeton in 2020.


a group of people smiling for the camera against a black background; woman in middle is wearing a medal around her neck


Commercializing adaptive wireless communications

While at Stanford, Goldsmith conducted groundbreaking research in wireless communications. She is credited with discovering adaptive modulation techniques, which allow network designers to align the speed at which data is sent with the speed a wireless channel can support while network conditions and channel quality fluctuate. Her techniques led to a reduction of network disruptions, laid the foundation for Internet of Things applications, and enabled faster Wi-Fi speeds. She has been granted 38 U.S. patents for her work.

To commercialize her research, she helped found Quantenna Communications, in San Jose, Calif., in 2005 and served as its CTO. The startup’s technology enabled video to be distributed in the home over Wi-Fi at data rates of 600 megabits per second. The company went public in 2016 and was acquired by ON Semiconductor in 2019.

IEEE: Where Luminaries Meet


Goldsmith joined IEEE while a grad student at UC Berkeley because that was the only way she could get access to its journals, she says. Another benefit of being a member was the opportunity to network—which she discovered from attending her first conference, IEEE Globecom, in San Diego.

“It was remarkable to me that as a graduate student and a nobody, I was meeting people whose work I had read,” she says. “I was just so in awe of what they had accomplished, and they were interested in my work as well.

“It was very clear to me that being part of IEEE would allow me to interact with the luminaries in my field,” she says.

That early view of IEEE has panned out well for her career, she says. She has published more than 150 papers, which are available to read in the IEEE Xplore Digital Library.

Goldsmith has held several leadership positions. She is a past president of the IEEE Information Theory Society and the founding editor in chief of the IEEE Journal on Selected Areas of Information Theory.

She volunteers, she says, because “I feel I should give back to a community that has supported and helped me with my own professional aspirations.

“I feel particularly obligated to create the environment that will help the next generation as well. Investing my time as a volunteer has had such a big payoff in the impact we collectively have had on the profession.”

In 2010, she helped found another communications company, Plume Design, in Palo Alto, Calif., where she also was CTO. Plume was first to develop adaptive Wi-Fi, a technology that uses machine learning to understand how your home’s bandwidth needs change during the day and adjusts to meet them.

With both Quantenna and Plume, she could have left Stanford to become their long-term CTO, but decided not to because, she says, “I just love the research mission of universities in advancing the frontiers of knowledge and the broader service mission of universities to make the world a better place.

“My heart is so much in the university; I can’t imagine ever leaving academia.”

The importance of diversity in engineering

Goldsmith has been an active IEEE volunteer for many years. One of her most important accomplishments, she says, was launching the IEEE Board of Directors Diversity and Inclusion Committee, which she chairs.

“We put in place a lot of programs and initiatives that mattered to a lot of people and that have literally changed the face of the IEEE,” she says.

Even though several organizations and universities have recently disbanded their diversity, equity, and inclusion efforts, DEI is important, she says.

“As a society, we need to ensure that every person can achieve their full potential,” she says. “And as a profession, whether it’s engineering, law, medicine, or government, you need diverse ideas, perspectives, and experiences to thrive.

“My work to enhance diversity and inclusion in the engineering profession has really been about excellence,” she says. “I don’t believe that engineering as a profession can achieve its full potential or can solve the wicked challenges facing society with technology if we don’t have diverse people who can contribute to those solutions.”

She points out that she came into engineering with a diverse set of perspectives she gained from being a woman and traveling through Europe as a student.

“If we have a very narrow definition of what excellence is or what merit is, we’re going to leave out a lot of very capable, strong people who can bring different ideas, out-of-box thinking, and other dimensions of excellence to the roles,” she says. “And that hurts our overarching goals.

“When I think back to my first year of college, when DEI didn’t exist, I almost left the program,” she adds. “That would have been really sad for me, and maybe for the profession too if I wasn’t in engineering.”

  • ✇IEEE Spectrum
  • This Member Gets a Charge from Promoting SustainabilityJoanna Goodrich
    Ever since she was an undergraduate student in Turkey, Simay Akar has been interested in renewable energy technology. As she progressed through her career after school, she chose not to develop the technology herself but to promote it. She has held marketing positions with major energy companies, and now she runs two startups. One of Akar’s companies develops and manufactures lithium-ion batteries and recycles them. The other consults with businesses to help them achieve their sustainability
     

This Member Gets a Charge from Promoting Sustainability

14. Květen 2024 v 20:00


Ever since she was an undergraduate student in Turkey, Simay Akar has been interested in renewable energy technology. As she progressed through her career after school, she chose not to develop the technology herself but to promote it. She has held marketing positions with major energy companies, and now she runs two startups.

One of Akar’s companies develops and manufactures lithium-ion batteries and recycles them. The other consults with businesses to help them achieve their sustainability goals.

Simay Akar


Employer

AK Energy Consulting

Title

CEO

Member grade

Senior member

Alma mater

Middle East Technical University in Ankara, Turkey

“I love the industry and the people in this business,” Akar says. “They are passionate about renewable energy and want their work to make a difference.”

Akar, a senior member, has become an active IEEE volunteer as well, holding leadership positions. First she served as student branch coordinator, then as a student chapter coordinator, and then as a member of several administrative bodies including the IEEE Young Professionals committee.

Akar received this year’s IEEE Theodore W. Hissey Outstanding Young Professional Award for her “leadership and inspiration of young professionals with significant contributions in the technical fields of photovoltaics and sustainable energy storage.” The award is sponsored by IEEE Young Professionals and the IEEE Photonics and Power & Energy societies.

Akar says she’s honored to get the award because “Theodore W. Hissey’s commitment to supporting young professionals across all of IEEE’s vast fields is truly commendable.” Hissey, who died in 2023, was an IEEE Life Fellow and IEEE director emeritus who supported the IEEE Young Professionals community for years.

“This award acknowledges the potential we hold to make a significant impact,” Akar says, “and it motivates me to keep pushing the boundaries in sustainable energy and inspire others to do the same.”

A career in sustainable technology

After graduating with a degree in the social impact of technology from Middle East Technical University, in Ankara, Turkey, Akar worked at several energy companies. Among them was Talesun Solar in Suzhou, China, where she was head of overseas marketing. She left to become the sales and marketing director for Eko Renewable Energy, in Istanbul.

In 2020 she founded Innoses in Shanghai. The company makes batteries for electric vehicles and customizes them for commercial, residential, and off-grid renewable energy systems such as solar panels. Additionally, Innoses recycles lithium-ion batteries, which otherwise end up in landfills, leaching hazardous chemicals.

“Recycling batteries helps cut down on pollution and greenhouse gas emissions,” Akar says. “That’s something we can all feel good about.”

She says there are two main methods of recycling batteries: melting and shredding.

Melting batteries is done by heating them until their parts separate. Valuable metals including cobalt and nickel are collected and cleaned to be reused in new batteries.

A shredding machine with high-speed rotating blades cuts batteries into small pieces. The different components are separated and treated with solutions to break them down further. Lithium, copper, and other metals are collected and cleaned to be reused.

The melting method tends to be better for collecting cobalt and nickel, while shredding is better for recovering lithium and copper, Akar says.

“This happens because each method focuses on different parts of the battery, so some metals are easier to extract depending on how they are processed,” she says. The chosen method depends on factors such as the composition of the batteries, the efficiency of the recycling process, and the desired metals to be recovered.

“There are a lot of environmental concerns related to battery usage,” Akar says. “But, if the right recycling process can be completed, batteries can also be sustainable. The right process could keep pollution and emissions low and protect the health of workers and surrounding communities.”

woman in a white lab coat smiling for the camera while holding a blue square shaped object Akar worked at several energy companies including Talesun Solar in Suzhou, China, which manufactures solar cells like the one she is holding.Simay Akar

Helping businesses with sustainability

After noticing many businesses were struggling to become more sustainable, in 2021 Akar founded AK Energy Consulting in Istanbul. Through discussions with company leaders, she found they “need guidance and support from someone who understands not only sustainable technology but also the best way renewable energy can help the planet,” she says.

“My goal for the firm is simple: Be a force for change and create a future that’s sustainable and prosperous for everyone,” she says.

Akar and her staff meet with business leaders to better understand their sustainability goals. They identify areas where companies can improve, assess the impact the recommended changes can have, and research the latest sustainable technology. Her consulting firm also helps businesses understand how to meet government compliance regulations.

“By embracing sustainability, companies can create positive social, environmental, and economic impact while thriving in a rapidly changing world,” Akar says. “The best part of my job is seeing real change happen. Watching my clients switch to renewable energy, adopt eco-friendly practices, and hit their green goals is like a pat on the back.”

Serving on IEEE boards and committees

Akar has been a dedicated IEEE volunteer since joining the organization in 2007 as an undergraduate student and serving as chair of her school’s student branch. After graduating, she held other roles including Region 8 student branch coordinator, student chapter coordinator, and the region’s IEEE Women in Engineering committee chair.

In her nearly 20 years as a volunteer, Akar has been a member of several IEEE boards and committees including the Young Professionals committee, the Technical Activities Board, and the Nominations and Appointments Committee for top-level positions.

She is an active member of the IEEE Power & Energy Society and is a former IEEE PES liaison to the Women in Engineering committee. She is also a past vice chair of the society’s Women in Power group, which supports career advancement and education and provides networking opportunities.

“My volunteering experiences have helped me gain a deep understanding of how IEEE operates,” she says. “I’ve accumulated invaluable knowledge, and the work I’ve done has been incredibly fulfilling.”

As a member of the IEEE–Eta Kappa Nu honor society, Akar has mentored members of the next generation of technologists. She also served as a mentor in the IEEE Member and Geographic Activities Volunteer Leadership Training Program, which provides members with resources and an overview of IEEE, including its culture and mission. The program also offers participants training in management and leadership skills.

Akar says her experiences as an IEEE member have helped shape her career. When she transitioned from working as a marketer to being an entrepreneur, she joined IEEE Entrepreneurship, eventually serving as its vice chair of products. She also was chair of the Region 10 entrepreneurship committee.

“I had engineers I could talk to about emerging technologies and how to make a difference through Innoses,” she says. “I also received a lot of support from the group.”

Akar says she is committed to IEEE’s mission of advancing technology for humanity. She currently chairs the IEEE Humanitarian Technology Board’s best practices and projects committee. She also is chair of the IEEE MOVE global committee. The mobile outreach vehicle program provides communities affected by natural disasters with power and Internet access.

“Through my leadership,” Akar says, “I hope to contribute to the development of innovative solutions that improve the well-being of communities worldwide.”

❌
❌