FreshRSS

Normální zobrazení

Jsou dostupné nové články, klikněte pro obnovení stránky.
PředevčíremHlavní kanál
  • ✇IEEE Spectrum
  • How Vannevar Bush Engineered the 20th CenturyG. Pascal Zachary
    In the summer of 1945, Robert J. Oppenheimer and other key members of the Manhattan Project gathered in New Mexico to witness the first atomic bomb test. Among the observers was Vannevar Bush, who had overseen the Manhattan Project and served as the sole liaison to U.S. President Franklin D. Roosevelt on progress toward the bomb. Remarkably, given his intense wartime responsibilities, Bush continued to develop his own ideas about computing and information. Just days before the Trinity test, h
     

How Vannevar Bush Engineered the 20th Century

18. Červen 2024 v 12:00


In the summer of 1945, Robert J. Oppenheimer and other key members of the Manhattan Project gathered in New Mexico to witness the first atomic bomb test. Among the observers was Vannevar Bush, who had overseen the Manhattan Project and served as the sole liaison to U.S. President Franklin D. Roosevelt on progress toward the bomb.

Remarkably, given his intense wartime responsibilities, Bush continued to develop his own ideas about computing and information. Just days before the Trinity test, he had published in The Atlantic Monthly a futuristic account of networks of information knitted together via “associative trails”—which we would now call hypertext or hyperlinks. To this day, Bush’s article—titled “As We May Think”—and his subsequent elaborations of networked information appliances are credited with shaping what would become the personal computer and the World Wide Web. And during his lifetime, Bush was celebrated as one of the nation’s leading prophets of technological change and the most influential proponent of government funding of science and engineering.

Illustration of the upper half of a man\u2019s face with text below the illustration. He\u2019s wearing an apparatus with a small camera lens strapped around his forehead. Vannevar Bush’s influential 1945 essay “As We May Think” shaped the subsequent development of the personal computer and the World Wide Web. The Atlantic Monthly

And yet, if you watched this year’s Oscar-winning Oppenheimer, Bush is only a minor character. Played by actor Matthew Modine, he testifies before a secret government panel that will decide whether Oppenheimer, scientific director of the Manhattan Project, should be stripped of his security clearance and banished from participating in future government decisions on sensitive technological issues.

“Try me, if you want to try him,” Bush defiantly tells the panel. Alas, tragedy unfolds when the panel punishes Oppenheimer for his opposition to testing the nation’s first hydrogen bomb. No more is said about Bush, even though he also opposed the first H-bomb test, on the grounds that the test, held on 1 November 1952, would help the Soviet Union build its own superweapon and accelerate a nuclear arms race. Bush was spared sanction and continued to serve in government, while Oppenheimer became a pariah.

Today, though, Oppenheimer is lionized while Bush is little known outside a small circle of historians, computer scientists, and policy thinkers. And yet, Bush’s legacy is without a doubt the more significant one for engineers and scientists, entrepreneurs, and public policymakers. He died at the age of 84 on 28 June 1974, and the 50th anniversary of his death seems like a good time to reflect on all that Vannevar Bush did to harness technological innovation as the chief source of economic, political, and military power for the United States and other leading nations.

Vannevar Bush and the Funding of Science & Engineering

Beginning in 1940, and with the ear of the president and leading scientific and engineering organizations, Vannevar Bush promoted the importance of supporting all aspects of research, including in universities, the military, and industry. Bush’s vision was shaped by World War II and America’s need to rapidly mobilize scientists and engineers for war fighting and defense. And it deepened during the long Cold War.

Bush’s pivotal contribution was his creation of the “research contract,” whereby public funds are awarded to civilian scientists and engineers based on effort, not just outcomes (as had been normal before World War II). This freedom to try new things and take risks transformed relations between government, business, and academia. By the end of the war, Bush’s research organization was spending US $3 million a week (about $52 million in today’s dollars) on some 6,000 researchers, most of them university professors and corporate engineers.

Illustrated portrait of a man with gray hair and eyeglasses next to a contraption that looks like a vacuum tube projecting a bullet. On its 3 April 1944 cover, Time called Vannevar Bush the “General of Physics,” for his role in accelerating wartime R&D.Ernest Hamlin Baker/TIME

Celebrated as the “general of physics” on the cover of Time magazine in 1944, Bush served as the first research chief of the newly created Department of Defense in 1947. Three years later, he successfully advocated for the creation of a national science foundation, to nourish and sustain civilian R&D. In launching his campaign for the foundation, Bush issued a report, entitled Science, The Endless Frontier, in which he argued that the nation’s future prosperity and the American spirit of “frontier” exploration depended on advances in science and engineering.

Bush’s influence went well beyond the politics of research and the mobilization of technology for national security. He was also a business innovator. In the 1920s, he cofounded Raytheon, and the company competed with behemoth RCA in the design and manufacture of vacuum tubes. As a professor and later dean of engineering at the Massachusetts Institute of Technology, he crafted incentives for professors to consult part time for business, setting in motion in the 1920s and 1930s practices now considered essential to science-based industry.

Bush’s beliefs influenced Frederick Terman, a doctoral student of his, to join Stanford University, where Terman played a decisive role in the birth of Silicon Valley. Another Bush doctoral student, Claude Shannon, joined Bell Labs and founded information theory. As a friend and trusted adviser to Georges Doriot, Bush helped launch one of the first venture capital firms, American Research and Development Corp.

Vannevar Bush’s Contributions to Computing

Black and white photo of a man in a suit leaning over a table-length machine with many rows of metal gears, shafts, and cranks. Starting in the 1920s, Bush began designing analog computing machines, known as differential analyzers. This version was at Aberdeen Proving Ground, in Maryland.MIT Museum

But wait, there’s more! Bush was a major figure in the early history of modern computing. In the 1930s, he gained prestige as the designer of a room-size analog computing machine known as the “differential analyzer,” then considered the most powerful calculating machine on the planet. It was visually impressive enough that UCLA’s differential analyzer had a major cameo in the 1951 sci-fi movie When Worlds Collide.

In the 1940s, despite his busy schedule with the Manhattan Project, Bush set aside time to envision and build working models of a desktop “memory extender,” or memex, to assist professionals in managing information and making decisions. And, as mentioned, he published that pivotal Atlantic article.

For engineers, Bush carries a special significance because of his passionate arguments throughout his life that all engineers—especially electrical engineers—deserve the same professional status as doctors, lawyers, and judges. Before World War II, engineers were viewed chiefly as workers for hire who did what they were told by their employers, but Bush eloquently insisted that engineers possessed professional rights and obligations and that they delivered their expert judgments independently and, when feasible, with the public interest in mind.

Black and white photo of an older white man in a three-piece suit. Vannevar Bush considered engineering not just a job but a calling. John Lent/AP

From the distance of a half century, Bush’s record as a futurist was mixed. He failed to envision the enormous expansion of both digital processing power and storage. He loudly proclaimed that miniaturized analog images stored on microfilm would long provide ample storage. (To be fair, many old microfilm and microfiche archives remain readable, unlike, say, digital video disks and old floppies.)

And yet, Bush’s ideas about the future of information have proved prescient. He believed, for example, that human consciousness could be enhanced through computational aids and that the automation of routine cognitive tasks could liberate human minds to concentrate and solve more difficult problems.

In this regard, Bush prefigures later computing pioneers like Douglas Engelbart (inventor of the mouse) and Larry Page (cofounder of Google), who promoted the concept of human “augmentation” through innovative digital means, such as hypertext and search, and enhancing the speed, accuracy, and depth of purposeful thought. Indeed, today’s debate over the harm to humans from generative AI could benefit from Bush’s own calm assessment about the creative, intellectual, and artistic benefits to be gained from “the revolution in machines to reduce mental drudgery.” The subject of human enhancement through digital systems was “almost constantly” on his mind, he wrote in his 1970 memoir, Pieces of the Action, four years before his death. Bush cautioned against hysteria in the face of digitally mediated cognitive enhancements. And he insisted that our technological systems should maintain the proverbial “human in the loop,” in order to honor and safeguard our values in the tricky management of digital information systems.

The fate of human culture and values was not Bush’s only worry. In his later life, he fretted about the spread of nuclear weapons and the risk of their use. Fittingly, as the titular head of the Manhattan Project and, in the 1950s, an opponent of testing the first H-bomb, he saw nuclear weapons as an existential threat to all life on the planet.

Bush identified no ultimate solutions to these problems. Having done so much to enhance and solidify the role of scientists and engineers in the advancement of society, he nevertheless foresaw an uncertain world, where scientific and technological outcomes would also continue to challenge us.

  • ✇Semiconductor Engineering
  • Chip Industry Week In ReviewThe SE Staff
    Synopsys refocused its security priorities around chips, striking a deal to sell off its Software Integrity Group subsidiary to private equity firms Clearlake Capital Group and Francisco Partners for about $2.1 billion. That deal comes on the heels of Synopsys’ recent acquisition of Intrinsic ID, which develops physical unclonable function IP. Sassine Ghazi, Synopsys’ president and CEO, said in an interview that the sale of the software group “gives us the ability to have management bandwidth, c
     

Chip Industry Week In Review

10. Květen 2024 v 09:01

Synopsys refocused its security priorities around chips, striking a deal to sell off its Software Integrity Group subsidiary to private equity firms Clearlake Capital Group and Francisco Partners for about $2.1 billion. That deal comes on the heels of Synopsys’ recent acquisition of Intrinsic ID, which develops physical unclonable function IP. Sassine Ghazi, Synopsys’ president and CEO, said in an interview that the sale of the software group “gives us the ability to have management bandwidth, capital, and to double down on what we’re doing in our core business.”

The U.S. Commerce Department reportedly pulled export licenses from Intel and Qualcomm that permitted them to ship semiconductors to Huawei, the Financial Times reported. The move comes after advanced chips from Intel reportedly were used in new laptops and smartphones from the China-based company. 

Apple debuted its second-generation 3nm M4 chip with the launch of the new iPad Pro. The CPU and GPU each have up to 10 cores, with a neural engine capable of 38 TOPS, and a total of 28 billion transistors. Apple also is working with TSMC to develop its own AI processors for running software in data centers, reports The Wall Street Journal.

The U.S. is expected to triple its semiconductor manufacturing capacity by 2032, according to a new report by the Semiconductor Industry Association and Boston Consulting. By that year, the U.S. is projected to have 28% of global capacity for advanced logic manufacturing and over a quarter of total global capital expenditures.

Fig. 1: Source: Semiconductor Industry Association and Boston Consulting Group.

Quick links to more news:

Global
Market Reports
Automotive
Security
Product News
Education and Training
Research
In-Depth
Events
Further Reading

Around The Globe

The U.S. Commerce Department plans to solicit bids from organizations interested in creating and managing a new CHIPS Manufacturing USA institute focused on digital twins in the semiconductor sector. The government will award up to $285 million to the selected proposal.

The U.S. National Science Foundation and Department of Energy announced the first 35 projects to be supported with computational time through the National Artificial Intelligence Research Resource (NAIRR) Pilot. The initial selected projects will gain access to several U.S. supercomputing centers and other resources, with the goal of advancing responsible AI research.

Through its new Federal AI Sandbox, MITRE is offering up its computing power to U.S. government agencies. “Our new Federal AI Sandbox will help level the playing field, making the high-quality compute power needed to train and test custom AI solutions available to any agency,” stated Charles Clancy, MITRE, senior vice president and chief technology officer, in the release.

Saudi Arabia’s $100 billion investment fund for semiconductor and AI technology pledged it would divest from China if requested by the U.S, reported Bloomberg.

Japan’s SoftBank is holding talks with UK-based AI Chip firm Graphcore about a possible acquisition, reports Bloomberg.

India’s chip industry is heating up. Mindgrove launched the country’s first SoC, named Secure IoT. The chip clocks at 700 MHz, and the company is touting its key security algorithms, secure boot, and on-chip OTP memory. Meanwhile, Lam Research is expanding its global semiconductor fabrication supply chain to include India.

Microsoft will build a $3.3 billion AI data center in Racine, Wisconsin, the same location as the failed Foxconn investment touted six years ago.

Markets And Money

The SIA announced first-quarter global semiconductor sales grew more than 15% YoY, still 5.7% below Q4 2023, but a big improvement over last year. Consider that the semiconductor materials market contracted 8.2% in 2023 to $66.7 billion, down from a record $72.7 billion in 2022, according to a new report from SEMI.

The demand for AI-powered consumer electronics will drive global AI chipset shipments to 1.3 billion by 2030, according to ABI Research.

TrendForce released several new industry reports this week. Among the highlights:

  • HBM prices are expected to increase by up to 10% in 2025, representing more than 30% of total DRAM value.
  • In Q2, DRAM contract prices rose 13% to 18%, while NAND flash prices increased 15% to 20%.
  • The top 10 design firms’ combined revenue increased 12% in 2023, with NVIDIA taking the lead for the first time.

A number of acquisitions were announced recently:

  • High-voltage IC company, Power Integrations, will purchase the assets of Odyssey Semiconductor Technologies, a developer of gallium nitride (GaN) transistors.
  • Mobix Labs agreed to buy RF design company RaGE Systems for $20 million in cash, stock, and incentives.
  • V-Tek, a packaging services and inspection company, acquired A&J Programming, a manufacturer of automated handling and programming equipment.

The global smartphone market grew 6% year-over-year, shipping 296.9 million units in Q124, according to a Counterpoint report.  Samsung toppled Apple for the top spot with a 20% share.

Automotive

U.S. Justice Department is investigating whether Tesla committed securities or wire fraud for misleading consumers and investors about its EV’s autopilot capabilities, according to Reuters.

The automotive ecosystem is undergoing a huge transformation toward software-defined vehicles, spurring new architectures that can be future-proofed and customized with software.

Infineon introduced a microcontroller for the automotive battery management sector, integrating high-precision analog and high-voltage subsystems on a single chip. Infineon also inked a deal with China’s Xiaomi to provide SiC power modules for Xiaomi’s new SU7 smart EV.

Keysight and ETAS are teaming up to embed ETAS fuzz testing software into Keysight’s automotive cybersecurity platform.

Also, Keysight’s device security research lab, Riscure Security Solutions, can now conduct vehicle type approval evaluations under United Nations R155/R156 regulations. Keysight acquired Riscure in March.

Two autonomous driving companies received big funding. British AI company Wayve received a $1.05 billion Series C investment from SoftBank, with contributions from NVIDIA and Microsoft. Hyundai spent an additional $475 million on Motional, according its recent earnings report.

The automotive imaging market grew to U.S. $5.7 billion in 2023 due to increased production, autonomy demand, and higher-resolution offerings.

Automotive Grade Linux (AGL), a collaborative cross-industry effort developing an open source platform for all Software-Defined Vehicles (SDVs), released cloud-native functionality, RISC-V architecture and flutter applications.

Security

SRAM security concerns are intensifying as a combination of new and existing techniques allow hackers to tap into data for longer periods of time after a device is powered down. This is particularly alarming as the leading edge of design shifts to heterogeneous systems in package, where chiplets frequently have their own memory hierarchy.

Machine learning is being used by hackers to find weaknesses in chips and systems, but it also is starting to be used to prevent breaches by pinpointing hardware and software design flaws.

txOne Networks, provider of Cyber-Physical Systems security, raised $51 million in Series B extension round of funding.

The U.S. Department of Justice charged a Russian national with his role as the creator, developer and administrator of the LockBit, a prolific ramsomware group, that allegedly stole $100 million in payments from 2,000 victims.

The Cybersecurity and Infrastructure Security Agency (CISA) launched “We Can Secure Our World,” a new public awareness program promoting “basic cyber hygiene” and the agency also issues a number of alerts/advisories.

Product News

Siemens unveiled its Solido IP Validation Suite software, an automated quality assurance product designed to work across all design IP types and formats. The suite includes Solido Crosscheck and IPdelta software, which both provide in-view, cross-view and version-to-version QA checks.

proteanTecs announced its lifecycle monitoring solution is being integrated into SAPEON’s new AI processors.

SpiNNcloud Systems revealed their SpiNNaker2 system, an event-based AI platform supercomputer containing chips that are a mesh of 152 ARM-based cores. The platform has the ability to emulate 10 billion neurons while still maintaining power efficiency and reliability.

Ansys partnered with Schrodinger to develop new computational materials. The collaboration will see Schrodinger’s molecular modeling technology used in Ansys’ simulation tools to evaluate performance ahead of the prototype phase.

Keysight introduced a pulse generator to its handheld radio frequency analyzer software options. The Option 357 pulse generator is downloadable on B- and C-Series FieldFox analyzers.

Education and Training

Semiconductor fever is hitting academia:

  • Penn State discussed its role in leading 15 universities to drive advances in chip integration and packaging.
  • Georgia Tech’s explained its research is happening at all the levels of the “semiconductor stack,” touting its 28,500 square feet of academic cleanroom space.
  • And in the past month Purdue University, Dassault Systems and Lam Research expanded an existing deal to use virtual twins and simulation tools in workforce development.

Arizona State University is beefing up their technology programs with a new bachelor’s and doctoral degree in robotics and autonomous systems.

Microsoft is partnering with Gateway Technical College in Wisconsin to create a Data Center Academy to train Wisconsinites for data center and STEM roles by 2030.

Research

Stanford-led researchers used ordinary-appearing glasses for an augmented reality headset, utilizing waveguide display techniques, holographic imaging, and AI.

UC Berkeley, LLNL, and MIT engineered a miniaturized on-chip energy storage and power delivery, using an atomic-scale approach to modify electrostatic capacitors.

ORNL and other researchers observed a “surprising isotope effect in the optoelectronic properties of a single layer of molybdenum disulfide” when they substituted heavier isotope of molybdenum in the crystal.

Three U.S. national labs are partnering with NVIDIA to develop advanced memory technologies for high performance computing.

In-Depth

In addition to this week’s Automotive, Security and Pervasive Computing newsletter, here are more top stories and tech talk from the week:

Events

Find upcoming chip industry events here, including:

Event Date Location
ASMC: Advanced Semiconductor Manufacturing Conference May 13 – 16 Albany, NY
ISES Taiwan 2024: International Semiconductor Executive Summit May 14 – 15 New Taipei City
Ansys Simulation World 2024 May 14 – 16 Online
Women In Semiconductors May 16 Albany, NY
European Test Symposium May 20 – 24 The Hague, Netherlands
NI Connect Austin 2024 May 20 – 22 Austin, Texas
ITF World 2024 (imec) May 21 – 22 Antwerp, Belgium
Embedded Vision Summit May 21 – 23 Santa Clara, CA
ASIP Virtual Seminar 2024 May 22 Online
Electronic Components and Technology Conference (ECTC) 2024 May 28 – 31 Denver, Colorado
Hardwear.io Security Trainings and Conference USA 2024 May 28 – Jun 1 Santa Clara, CA
Find All Upcoming Events Here

Upcoming webinars are here.

Further Reading

Read the latest special reports and top stories, or check out the latest newsletters:

Automotive, Security and Pervasive Computing
Systems and Design
Low Power-High Performance
Test, Measurement and Analytics
Manufacturing, Packaging and Materials

The post Chip Industry Week In Review appeared first on Semiconductor Engineering.

  • ✇Semiconductor Engineering
  • Chip Industry Week In ReviewThe SE Staff
    Synopsys refocused its security priorities around chips, striking a deal to sell off its Software Integrity Group subsidiary to private equity firms Clearlake Capital Group and Francisco Partners for about $2.1 billion. That deal comes on the heels of Synopsys’ recent acquisition of Intrinsic ID, which develops physical unclonable function IP. Sassine Ghazi, Synopsys’ president and CEO, said in an interview that the sale of the software group “gives us the ability to have management bandwidth, c
     

Chip Industry Week In Review

10. Květen 2024 v 09:01

Synopsys refocused its security priorities around chips, striking a deal to sell off its Software Integrity Group subsidiary to private equity firms Clearlake Capital Group and Francisco Partners for about $2.1 billion. That deal comes on the heels of Synopsys’ recent acquisition of Intrinsic ID, which develops physical unclonable function IP. Sassine Ghazi, Synopsys’ president and CEO, said in an interview that the sale of the software group “gives us the ability to have management bandwidth, capital, and to double down on what we’re doing in our core business.”

The U.S. Commerce Department reportedly pulled export licenses from Intel and Qualcomm that permitted them to ship semiconductors to Huawei, the Financial Times reported. The move comes after advanced chips from Intel reportedly were used in new laptops and smartphones from the China-based company. 

Apple debuted its second-generation 3nm M4 chip with the launch of the new iPad Pro. The CPU and GPU each have up to 10 cores, with a neural engine capable of 38 TOPS, and a total of 28 billion transistors. Apple also is working with TSMC to develop its own AI processors for running software in data centers, reports The Wall Street Journal.

The U.S. is expected to triple its semiconductor manufacturing capacity by 2032, according to a new report by the Semiconductor Industry Association and Boston Consulting. By that year, the U.S. is projected to have 28% of global capacity for advanced logic manufacturing and over a quarter of total global capital expenditures.

Fig. 1: Source: Semiconductor Industry Association and Boston Consulting Group.

Quick links to more news:

Global
Market Reports
Automotive
Security
Product News
Education and Training
Research
In-Depth
Events
Further Reading

Around The Globe

The U.S. Commerce Department plans to solicit bids from organizations interested in creating and managing a new CHIPS Manufacturing USA institute focused on digital twins in the semiconductor sector. The government will award up to $285 million to the selected proposal.

The U.S. National Science Foundation and Department of Energy announced the first 35 projects to be supported with computational time through the National Artificial Intelligence Research Resource (NAIRR) Pilot. The initial selected projects will gain access to several U.S. supercomputing centers and other resources, with the goal of advancing responsible AI research.

Through its new Federal AI Sandbox, MITRE is offering up its computing power to U.S. government agencies. “Our new Federal AI Sandbox will help level the playing field, making the high-quality compute power needed to train and test custom AI solutions available to any agency,” stated Charles Clancy, MITRE, senior vice president and chief technology officer, in the release.

Saudi Arabia’s $100 billion investment fund for semiconductor and AI technology pledged it would divest from China if requested by the U.S, reported Bloomberg.

Japan’s SoftBank is holding talks with UK-based AI Chip firm Graphcore about a possible acquisition, reports Bloomberg.

India’s chip industry is heating up. Mindgrove launched the country’s first SoC, named Secure IoT. The chip clocks at 700 MHz, and the company is touting its key security algorithms, secure boot, and on-chip OTP memory. Meanwhile, Lam Research is expanding its global semiconductor fabrication supply chain to include India.

Microsoft will build a $3.3 billion AI data center in Racine, Wisconsin, the same location as the failed Foxconn investment touted six years ago.

Markets And Money

The SIA announced first-quarter global semiconductor sales grew more than 15% YoY, still 5.7% below Q4 2023, but a big improvement over last year. Consider that the semiconductor materials market contracted 8.2% in 2023 to $66.7 billion, down from a record $72.7 billion in 2022, according to a new report from SEMI.

The demand for AI-powered consumer electronics will drive global AI chipset shipments to 1.3 billion by 2030, according to ABI Research.

TrendForce released several new industry reports this week. Among the highlights:

  • HBM prices are expected to increase by up to 10% in 2025, representing more than 30% of total DRAM value.
  • In Q2, DRAM contract prices rose 13% to 18%, while NAND flash prices increased 15% to 20%.
  • The top 10 design firms’ combined revenue increased 12% in 2023, with NVIDIA taking the lead for the first time.

A number of acquisitions were announced recently:

  • High-voltage IC company, Power Integrations, will purchase the assets of Odyssey Semiconductor Technologies, a developer of gallium nitride (GaN) transistors.
  • Mobix Labs agreed to buy RF design company RaGE Systems for $20 million in cash, stock, and incentives.
  • V-Tek, a packaging services and inspection company, acquired A&J Programming, a manufacturer of automated handling and programming equipment.

The global smartphone market grew 6% year-over-year, shipping 296.9 million units in Q124, according to a Counterpoint report.  Samsung toppled Apple for the top spot with a 20% share.

Automotive

U.S. Justice Department is investigating whether Tesla committed securities or wire fraud for misleading consumers and investors about its EV’s autopilot capabilities, according to Reuters.

The automotive ecosystem is undergoing a huge transformation toward software-defined vehicles, spurring new architectures that can be future-proofed and customized with software.

Infineon introduced a microcontroller for the automotive battery management sector, integrating high-precision analog and high-voltage subsystems on a single chip. Infineon also inked a deal with China’s Xiaomi to provide SiC power modules for Xiaomi’s new SU7 smart EV.

Keysight and ETAS are teaming up to embed ETAS fuzz testing software into Keysight’s automotive cybersecurity platform.

Also, Keysight’s device security research lab, Riscure Security Solutions, can now conduct vehicle type approval evaluations under United Nations R155/R156 regulations. Keysight acquired Riscure in March.

Two autonomous driving companies received big funding. British AI company Wayve received a $1.05 billion Series C investment from SoftBank, with contributions from NVIDIA and Microsoft. Hyundai spent an additional $475 million on Motional, according its recent earnings report.

The automotive imaging market grew to U.S. $5.7 billion in 2023 due to increased production, autonomy demand, and higher-resolution offerings.

Automotive Grade Linux (AGL), a collaborative cross-industry effort developing an open source platform for all Software-Defined Vehicles (SDVs), released cloud-native functionality, RISC-V architecture and flutter applications.

Security

SRAM security concerns are intensifying as a combination of new and existing techniques allow hackers to tap into data for longer periods of time after a device is powered down. This is particularly alarming as the leading edge of design shifts to heterogeneous systems in package, where chiplets frequently have their own memory hierarchy.

Machine learning is being used by hackers to find weaknesses in chips and systems, but it also is starting to be used to prevent breaches by pinpointing hardware and software design flaws.

txOne Networks, provider of Cyber-Physical Systems security, raised $51 million in Series B extension round of funding.

The U.S. Department of Justice charged a Russian national with his role as the creator, developer and administrator of the LockBit, a prolific ramsomware group, that allegedly stole $100 million in payments from 2,000 victims.

The Cybersecurity and Infrastructure Security Agency (CISA) launched “We Can Secure Our World,” a new public awareness program promoting “basic cyber hygiene” and the agency also issues a number of alerts/advisories.

Product News

Siemens unveiled its Solido IP Validation Suite software, an automated quality assurance product designed to work across all design IP types and formats. The suite includes Solido Crosscheck and IPdelta software, which both provide in-view, cross-view and version-to-version QA checks.

proteanTecs announced its lifecycle monitoring solution is being integrated into SAPEON’s new AI processors.

SpiNNcloud Systems revealed their SpiNNaker2 system, an event-based AI platform supercomputer containing chips that are a mesh of 152 ARM-based cores. The platform has the ability to emulate 10 billion neurons while still maintaining power efficiency and reliability.

Ansys partnered with Schrodinger to develop new computational materials. The collaboration will see Schrodinger’s molecular modeling technology used in Ansys’ simulation tools to evaluate performance ahead of the prototype phase.

Keysight introduced a pulse generator to its handheld radio frequency analyzer software options. The Option 357 pulse generator is downloadable on B- and C-Series FieldFox analyzers.

Education and Training

Semiconductor fever is hitting academia:

  • Penn State discussed its role in leading 15 universities to drive advances in chip integration and packaging.
  • Georgia Tech’s explained its research is happening at all the levels of the “semiconductor stack,” touting its 28,500 square feet of academic cleanroom space.
  • And in the past month Purdue University, Dassault Systems and Lam Research expanded an existing deal to use virtual twins and simulation tools in workforce development.

Arizona State University is beefing up their technology programs with a new bachelor’s and doctoral degree in robotics and autonomous systems.

Microsoft is partnering with Gateway Technical College in Wisconsin to create a Data Center Academy to train Wisconsinites for data center and STEM roles by 2030.

Research

Stanford-led researchers used ordinary-appearing glasses for an augmented reality headset, utilizing waveguide display techniques, holographic imaging, and AI.

UC Berkeley, LLNL, and MIT engineered a miniaturized on-chip energy storage and power delivery, using an atomic-scale approach to modify electrostatic capacitors.

ORNL and other researchers observed a “surprising isotope effect in the optoelectronic properties of a single layer of molybdenum disulfide” when they substituted heavier isotope of molybdenum in the crystal.

Three U.S. national labs are partnering with NVIDIA to develop advanced memory technologies for high performance computing.

In-Depth

In addition to this week’s Automotive, Security and Pervasive Computing newsletter, here are more top stories and tech talk from the week:

Events

Find upcoming chip industry events here, including:

Event Date Location
ASMC: Advanced Semiconductor Manufacturing Conference May 13 – 16 Albany, NY
ISES Taiwan 2024: International Semiconductor Executive Summit May 14 – 15 New Taipei City
Ansys Simulation World 2024 May 14 – 16 Online
Women In Semiconductors May 16 Albany, NY
European Test Symposium May 20 – 24 The Hague, Netherlands
NI Connect Austin 2024 May 20 – 22 Austin, Texas
ITF World 2024 (imec) May 21 – 22 Antwerp, Belgium
Embedded Vision Summit May 21 – 23 Santa Clara, CA
ASIP Virtual Seminar 2024 May 22 Online
Electronic Components and Technology Conference (ECTC) 2024 May 28 – 31 Denver, Colorado
Hardwear.io Security Trainings and Conference USA 2024 May 28 – Jun 1 Santa Clara, CA
Find All Upcoming Events Here

Upcoming webinars are here.

Further Reading

Read the latest special reports and top stories, or check out the latest newsletters:

Automotive, Security and Pervasive Computing
Systems and Design
Low Power-High Performance
Test, Measurement and Analytics
Manufacturing, Packaging and Materials

The post Chip Industry Week In Review appeared first on Semiconductor Engineering.

❌
❌