FreshRSS

Normální zobrazení

Jsou dostupné nové články, klikněte pro obnovení stránky.
PředevčíremHlavní kanál
  • ✇Semiconductor Engineering
  • Efficient ElectronicsAndy Heinig
    Attention nowadays has turned to the energy consumption of systems that run on electricity. At the moment, the discussion is focused on electricity consumption in data centers: if this continues to rise at its current rate, it will account for a significant proportion of global electricity consumption in the future. Yet there are other, less visible electricity consumers whose power needs are also constantly growing. One example is mobile communications, where ongoing expansion – especially with
     

Efficient Electronics

16. Květen 2024 v 09:07

Attention nowadays has turned to the energy consumption of systems that run on electricity. At the moment, the discussion is focused on electricity consumption in data centers: if this continues to rise at its current rate, it will account for a significant proportion of global electricity consumption in the future. Yet there are other, less visible electricity consumers whose power needs are also constantly growing. One example is mobile communications, where ongoing expansion – especially with the new current 5G standard and the future 6G standard – is pushing up the number of base stations required. This, too, will drive up electricity demand, as the latter increases linearly with the number of stations; at least, if the demand per base station is not reduced. Another example is electronics for the management of household appliances and in the industrial sector: more and more such systems are being installed, and their electronics are becoming significantly more powerful. They are not currently optimized for power consumption, but rather for performance.

This state of affairs simply cannot continue into the future for two reasons: first, the price of electricity will continue to rise worldwide; and second, many companies are committed to becoming carbon neutral. Their desire for carbon neutrality in turn makes electricity yet more expensive and restricts the overall quantity much more severely. As a result, there will be a significant demand for efficient electronics in the coming years, particularly as regards electricity consumption.

This development is already evident today, especially in power electronics, where the use of new semiconductor materials such as GaN or SiC has made it possible to reduce power consumption. A key driver for the development and introduction of such new materials was the electric car market, as reduced losses in the electronics leads directly to increased vehicle range. In the future, these materials will also find their way into other areas; for instance, they are already beginning to establish themselves in voltage transformers in various industries. However, this shift requires more factories and more suppliers for production, and further work also needs to be carried out to develop appropriate circuit concepts for these technologies.

In addition to the use of new materials, other concepts to reduce energy consumption are needed. The data center sector will require increasingly better-adapted circuits – ones that have been developed for a specific task, and as a result can perform this task much more efficiently than universal processors. This involves striking the optimum balance between universal architectures, such as microprocessors and graphics cards, and highly specialized architectures that are suitable for only one use case. Some products will also fall between these two extremes. The increased energy efficiency is then “purchased” through the effort and expense of developing exceptionally specially adapted architectures. It’s important to note that the more specialized an adapted architecture is, the smaller the market for it. That means the only way such architectures will be economically viable is if they can be developed efficiently. This calls for new approaches to derive these architectures directly from high-level hardware/software optimization, without the additional implementation steps that are still necessary today. In sum, the only way to make this approach possible is by using novel concepts and tools to generate circuits directly from a high-level description.

The post Efficient Electronics appeared first on Semiconductor Engineering.

Merging Power and Arithmetic Optimization Via Datapath Rewriting (Intel, Imperial College London)

A new technical paper titled “Combining Power and Arithmetic Optimization via Datapath Rewriting” was published by researchers at Intel Corporation and Imperial College London.

Abstract:
“Industrial datapath designers consider dynamic power consumption to be a key metric. Arithmetic circuits contribute a major component of total chip power consumption and are therefore a common target for power optimization. While arithmetic circuit area and dynamic power consumption are often correlated, there is also a tradeoff to consider, as additional gates can be added to explicitly reduce arithmetic circuit activity and hence reduce power consumption. In this work, we consider two forms of power optimization and their interaction: circuit area reduction via arithmetic optimization, and the elimination of redundant computations using both data and clock gating. By encoding both these classes of optimization as local rewrites of expressions, our tool flow can simultaneously explore them, uncovering new opportunities for power saving through arithmetic rewrites using the e-graph data structure. Since power consumption is highly dependent upon the workload performed by the circuit, our tool flow facilitates a data dependent design paradigm, where an implementation is automatically tailored to particular contexts of data activity. We develop an automated RTL to RTL optimization framework, ROVER, that takes circuit input stimuli and generates power-efficient architectures. We evaluate the effectiveness on both open-source arithmetic benchmarks and benchmarks derived from Intel production examples. The tool is able to reduce the total power consumption by up to 33.9%.”

Find the technical paper here. Published April 2024.

Samuel Coward, Theo Drane, Emiliano Morini, George Constantinides; arXiv:2404.12336v1.

The post Merging Power and Arithmetic Optimization Via Datapath Rewriting (Intel, Imperial College London) appeared first on Semiconductor Engineering.

Merging Power and Arithmetic Optimization Via Datapath Rewriting (Intel, Imperial College London)

A new technical paper titled “Combining Power and Arithmetic Optimization via Datapath Rewriting” was published by researchers at Intel Corporation and Imperial College London.

Abstract:
“Industrial datapath designers consider dynamic power consumption to be a key metric. Arithmetic circuits contribute a major component of total chip power consumption and are therefore a common target for power optimization. While arithmetic circuit area and dynamic power consumption are often correlated, there is also a tradeoff to consider, as additional gates can be added to explicitly reduce arithmetic circuit activity and hence reduce power consumption. In this work, we consider two forms of power optimization and their interaction: circuit area reduction via arithmetic optimization, and the elimination of redundant computations using both data and clock gating. By encoding both these classes of optimization as local rewrites of expressions, our tool flow can simultaneously explore them, uncovering new opportunities for power saving through arithmetic rewrites using the e-graph data structure. Since power consumption is highly dependent upon the workload performed by the circuit, our tool flow facilitates a data dependent design paradigm, where an implementation is automatically tailored to particular contexts of data activity. We develop an automated RTL to RTL optimization framework, ROVER, that takes circuit input stimuli and generates power-efficient architectures. We evaluate the effectiveness on both open-source arithmetic benchmarks and benchmarks derived from Intel production examples. The tool is able to reduce the total power consumption by up to 33.9%.”

Find the technical paper here. Published April 2024.

Samuel Coward, Theo Drane, Emiliano Morini, George Constantinides; arXiv:2404.12336v1.

The post Merging Power and Arithmetic Optimization Via Datapath Rewriting (Intel, Imperial College London) appeared first on Semiconductor Engineering.

❌
❌