Driving Cost Lower and Power Higher With GaN
Gallium nitride is starting to make broader inroads in the lower-end of the high-voltage, wide-bandgap power FET market, where silicon carbide has been the technology of choice. This shift is driven by lower costs and processes that are more compatible with bulk silicon.
Efficiency, power density (size), and cost are the three major concerns in power electronics, and GaN can meet all three criteria. However, to satisfy all of those criteria consistently, the semiconductor ecosystem needs to develop best practices for test, inspection, and metrology, determining what works best for which applications and under varying conditions.
Power ICs play an essential role in stepping up and down voltage levels from one power source to another. GaN is used extensively today in smart phone and laptop adapters, but market opportunities are beginning to widen for this technology. GaN likely will play a significant role in both data centers and automotive applications [1]. Data centers are expanding rapidly due to the focus on AI and a build-out at the edge. And automotive is keen to use GaN power ICs for inverter modules because they will be cheaper than SiC, as well as for onboard battery chargers (OBCs) and various DC-DC conversions from the battery to different applications in the vehicle.
Fig. 1: Current and future fields of interest for GaN and SiC power devices. Source A. Meixner/Semiconductor Engineering
But to enter new markets, GaN device manufactures need to more quickly ramp up new processes and their associated products. Because GaN for power transistors is a developing process technology, measurement data is critical to qualify both the manufacturing process and the reliability of the new semiconductor technology and resulting product.
Much of GaN’s success will depend on metrology and inspection solutions that offer high throughput, as well as non-destructive testing methods such as optical and X-ray. Electron microscopy is useful for drilling down into key device parameters and defect mechanisms. And electrical tests provide complementary data that assists with product/process validation, reliability and qualification, system-level validation, as well as being used for production screening.
Silicon carbide (SiC) remains the material of choice for very high-voltage applications. It offers better performance and higher efficiency than silicon. But SiC is expensive. It requires different equipment than silicon, it’s difficult to grow SiC ingots, and today there is limited wafer capacity.
In contrast, GaN offers some of the same desirable characteristics as SiC and can operate at even higher switching speeds. GaN wafer production is cheaper because it can be created on a silicon substrate utilizing typical silicon processing equipment other than the GaN epitaxial deposition tool. That enables a fab/foundry with a silicon CMOS process to ramp a GaN process with an engineering team experienced in GaN.
The cost comparison isn’t entirely apples-to-apples, of course. The highest-voltage GaN on the market today uses silicon on sapphire (SoS) or other engineered substrates, which are more expensive. But below those voltages, GaN typically has a cost advantage, and that has sparked renewed interest in this technology.
“GaN-based products increase the performance envelopes relative to the incumbent and mature silicon-based technologies,” said Vineet Pancholi, senior director of test technology at Amkor. “Switching speeds with GaN enable the application in ways never possible with silicon. But as the GaN production volumes ramp, these products have extreme economic pressures. The production test list includes static attributes. However, the transient and dynamic attributes are the primary benefit of GaN in the end application.”
Others agree. “The world needs cheaper material, and GaN is easy to build,” said Frank Heidemann, vice president and technology leader of SET at NI/Emerson Test & Measurement. “Gallium nitride has a huge success in the lower voltages ranges — anything up to 500V. This is where the GaN process is very well under control. The problem now is building in higher voltages is a challenge. In the near future there will be products at even higher voltage levels.”
Those higher-voltage applications require new process recipes, new power IC designs, and subsequently product/process validation and qualification.
GaN HEMT properties
Improving the processes needed to create GaN high-electron-mobility transistors (HEMTs) requires a deep understanding of the material properties and the manufacturing consequences of layering these materials.
The underlying physics and structure of wide-bandgap devices significantly differs from silicon high-voltage transistors. Silicon transistors rely on doping of p and n materials. When voltage is applied at the gate, it creates a channel for current to flow from source to drain. In contrast, wide-bandgap transistors are built by layering thin films of different materials, which differ in their bandgap energy. [2] Applying a voltage to the gate enables an electron exchange between the two materials, driving those electrons along the channel between source and drain.
Fig. 2. Cross-sectional animation of e-mode GaN HEMT device. Source: Zeiss Microscopy
“GaN devices rely on two-dimensional electron gas (2DEG) created at the GaN and AlGaN interface to conduct current at high speed,” said Jiangtao Hu, senior director of product marketing at Onto Innovation. “To enable high electron mobility, the epitaxy process creating complex multi-layer crystalline films must be carefully monitored and controlled, ensuring critical film properties such as thickness, composition, and interface roughness are within a tight spec. The ongoing trend of expanding wafer sizes further requires the measurement to be on-product and non-destructive for uniformity control.”
Fig. 3: SEM cross-section of enhancement-mode GaN HEMT built on silicon which requires a superlattice. Source: Zeiss Microscopy
Furthermore, each layer’s electrical properties need to be understood. “It is of utmost importance to determine, as early as possible in the manufacturing process, the electrical characteristics of the structures, the sheet resistance of the 2DEG, the carrier concentration, and the mobility of carriers in the channel, preferably at the wafer level in a non-destructive assessment,” said Christophe Maleville, CTO and senior executive vice president of innovation at Soitec.
Developing process recipes for GaN HEMT devices at higher operating ranges require measurements taken during wafer manufacturing and device testing, both for qualification of a process/product and production manufacturing. Inspection, metrology, and electrical tests focus on process anomalies and defects, which impact the device performance.
“Crystal defects such as dislocations and stacking faults, which can form during deposition and subsequently be grown over and buried, can create long-term reliability concerns even if the devices pass initial testing,” said David Taraci, business development manager of electronics strategic accounts at ZEISS Research Microscopy Solutions. “Gate oxides can pinch off during deposition, creating voids which may not manifest as an issue immediately.”
The quality of the buffer layer is critical because it affects the breakdown voltage. “The maximum breakdown voltage of the devices will be ultimately limited by the breakdown of the buffer layer grown in between the Si substrate and the GaN channel,” said Soitec’s Maleville. “An electrical assessment (IV at high voltage) requires destructive measurements as well as device isolation. This is performed on a sample basis only.”
One way to raise the voltage limit of a GaN device is to add a ‘gate driver’ which keeps it reliable at higher voltages. But to further expand GaN technology’s performance envelope to higher voltage operation engineers need to comprehend a new GaN device reliability properties.
“We are supporting GaN lifetime validation, which is the prediction of a mission characteristic of lifetime for gallium nitride power devices,” said Emerson’s Heidemann. “Engineers build physics-based failure models of these devices. Next, they investigate the acceleration factors. How can we really make tests and verification properly so that we can assess lifetime health?”
The qualification procedures necessitate life-stressing testing, which duplicates predicated mission profile usage, as well as electrical testing, after each life-stress period. That allows engineers to determine shifts in transistor characteristics and outright failures. For example, life stress periods could start with 4,000 hours and increase in 1,000-hour increments to 12,000 hours, during which time the device is turned on/off with specific durations of ‘on’ times.
“Reliability predictions are based upon application mission profiles,” said Stephanie Watts Butler, independent consultant and vice president of industry and standards in the IEEE Power Electronics Society. “In some cases, GaN is going into a new application, or being used differently than silicon, and the mission profile needs to be elucidated. This is one area that the industry is focused upon together.”
As an example of this effort, Butler pointed to JEDEC JEP186 spec [3], which provides guidelines for specifying the breakdown voltage for GaN HEMT devices. “JEDEC and IEC both are issuing guideline documents for methods for test and characterization of wide-bandgap devices, as well as reliability and qualification procedures, and datasheet parameters to enable wide bandgap devices, including GaN, to ramp faster with higher quality in the marketplace,” she said.
Electrical tests remain essential to screening for both time-zero and reliability-associated defects (e.g. infant mortality and reduced lifetime). This holds true for screening wafers, singulated die, and packaged devices. And test content includes tests specific to GaN HEMT power devices performance specifications and tests more directed at defect detection.
Due to inherent device differences, the GaN test list varies in some significant ways from Si and SiC power ICs. Assessing GaN health for qualification and manufacturing purposes requires both static and dynamic tests (SiC DC and AC). A partial list includes zero gate voltage drain leakage current, rise time, fall time, dynamic RDSon, and dielectric integrity tests.
“These are very time-intensive measurement techniques for GaN devices,” said Tom Tran, product manager for power discrete test products at Teradyne. “On top of the static measurement techniques is the concern about trapped charge — both for functionality and efficiency — revealed through dynamic RDSon testing.”
Transient tests are necessary for qualification and production purposes due to the high electron mobility, which is what gives GaN HEMT its high switching speed. “From a test standpoint, static test failures indicate basic processing failures, while transient switching failures indicate marginal or process excursions,” said Amkor’s Vineet Pancholi. “Both tests continue to be important to our customers until process maturity is achieved. With the extended range of voltage, current, and switching operations, mainstream test equipment suppliers have been adding complementary instrumentation capabilities.”
And ATE suppliers look to reduce test time, which reduces cost. “Both static and dynamic test requirements drive very high test times,” said Teradyne’s Tran. “But the GaN of today is very different than GaN from a decade ago. We’re able to accelerate this testing just due to the core nature of our ATE architecture. We think there is the possibility further reducing the cost of test for our customers.”
Tools for process control and quality management
GaN HEMT devices’ reliance on thin-film processes highlights the need to understand the material properties and the nature of the interfaces between each layer. That requires tools for process control, yield management, and failure analysis.
“GaN device performance is highly reflective of the film characteristics used in its manufacture,” said Mike McIntyre, director of software product management at Onto Innovation. “The smallest process variations when it comes to film thickness, film stress, line width or even crystalline make-up, can have a dramatic impact on how the device performs, or even if it is usable in its target market. This lack of tolerance to any variation places a greater burden on engineers to understand the factors that correlate to device performance and its profitability.”
Inspection methods that are non-destructive vary in throughput time and in the level of detail provided for engineers to make decisions. While optical methods are fast and provide full wafer coverage, they cannot accurately classify chemical or structural defects for engineers/technicians to review. In contrast, destructive methods provide the information that’s needed to truly understand the nature of the defects. For example, conductive atomic force microscopy (AFM) probing remains slow, but it can identify electrical nature of a defect. And to truly comprehend crystallographic defects and the chemical nature of impurities, engineers can turn to electron microscopy based methods.
One way to assess thin films is with X-rays. “High resolution X-ray measurements are useful to provide production control of the wafer crystalline quality and defects in the buffer, said Soitec’s Maleville. “Minor changes in composition of the buffer, barrier, or capping layer, as well as their layer thickness, can result in significant deviations in device performance. Thickness of the layers, in particular the top cap, barrier, and spacer layers, are typically measured by XRD. However, the throughput of XRD systems is low. Alternatively, ellipsometry offers a reasonably good throughput measurement with more data points for both development and production mode scenarios.”
Optical techniques have been the standard for thin film assessment in the semiconductor industry. Inspection equipment providers have long been on the continuation improvement always evolving journey to improve accuracy, precision and throughput. Providing better metrology tools helps device makers with process control and yield management.
“Recently, we successfully developed a non-destructive on product measurement capability for GaN epi process monitoring,” said Onto’s Hu. “It takes advantage of our advanced optical film experience and our modeling software to simultaneously measure multi-layer epi film thickness, composition, and interface roughness on product wafers.”
Fig. 4: Metrology measurements on GaN for roughness and for Al concentration. Source: Onto Innovation
Assessing the electrical characteristics — 2DEG sheet resistance, channel carrier mobility, and concentration are required for controlling the manufacturing process. A non-destructive assessment would be an improvement over currently used destructive techniques (e.g. SEM). The solutions used for other power ICs do not work for GaN HEMT. As of today, no one has come up with a commercial solution.
Inspection looks for yield impacting defects, as well as defects that affect wafer acceptance in the case of companies that provide engineered substrates.
“Defect inspection for incoming silicon wafers looks for particles, scratches, and other anomalies that might seed imperfections in the subsequent buffer and crystal growth,” said Antonio Mani, business development manager at Thermo Fisher Scientific. “After the growth of the buffer and termination layers, followed by the growth of the doped GaN layers, another set of inspections is carried out. In this case, it is more focused on the detection of cracks, other macroscopic defects (micropipes, carrots), and looking for micro-pits, which are associated to threading dislocations that have survived the buffer layer and are surfacing at the top GaN surface.”
Mani noted that follow-up inspection methods for Si and GaN devices are similar. The difference is the importance in connecting observations back to post-epi results.
More accurate defect libraries would shorten inspection time. “The lack of standardization of surface defect analysis impedes progress,” said Soitec’s Maleville. “Different tools are available on the market, while defect libraries are still being developed essentially by the different user. This lack of globally accepted method and standard defect library for surface defect analysis is slowing down the GaN surface qualification process.”
Whether it involves a manufacturing test failure or a field return, the necessary steps for determining root cause on a problematic packaged part begins with fault isolation. “Given the direct nature of the bandgap of GaN and its operating window in terms of voltage/frequency/power density, classical methods of fault isolation (e.g. optical emission spectroscopy) are forced to focus on different wavelengths and different ranges of excitation of the typical electrical defects,” said Thermo Fisher’s Mani. “Hot carrier pairs are just one example, which highlights the radical difference between GaN and silicon devices.”
In addition to fault isolation there are challenges in creating a device cross-section with focused-ion beam milling methods.
“Several challenges exist in FA for GaN power ICs,” said Zeiss’ Taraci. “In any completed device, in particular, there are numerous materials and layers present for stress mitigation/relaxation and thermal management, depending on whether we are talking enhancement- or depletion-mode devices. Length-scale can be difficult to manage as you are working with these samples, because they have structures of varying dimension present in close proximity. Many of the structures are quite unique to power GaN and can pose challenges themselves in cross-section and analyses. Beam-milling approaches have to be tailored to prevent heavy re-deposition and masking, and are dependent on material, lattice orientation, current, geometry, etc.”
Conclusion
To be successful in bringing new GaN power ICs to new application space engineers and their equipment suppliers need faster process development and a reduction in overall costs. For HEMT devices, it’s understanding the resulting layers and their material properties. This requires a host of metrology, inspection, test, and failure analysis steps to comprehend the issues, and to provide feedback data from experiments and qualifications for process and design improvements.
References
[1] M. Buffolo et al., “Review and Outlook on GaN and SiC Power Devices: Industrial State-of-the-Art, Applications, and Perspectives,” in IEEE Transactions on Electron Devices, March 2024, open access, https://ieeexplore.ieee.org/document/10388225
[2] High electron mobility transistor (HEMT) https://en.wikipedia.org/wiki/High-electron-mobility_transistor
[3] Guideline to specify a transient off-state withstand voltage robustness indicated in datasheets for lateral GaN power conversion devices, JEP186, version 1.0, December 2021. https://www.jedec.org/standards-documents/docs/jep186
Related Stories
Ramping Up Power Electronics For EVs
SiC Growth For EVs Is Stressing Manufacturing
GaN ICs Wanted For Power, EV Markets
Architecting Chips For High-Performance Computing
The post Driving Cost Lower and Power Higher With GaN appeared first on Semiconductor Engineering.