FreshRSS

Normální zobrazení

Jsou dostupné nové články, klikněte pro obnovení stránky.
PředevčíremHlavní kanál
  • ✇Semiconductor Engineering
  • Ultrathin vdW Ferromagnet at Room Temperature (MIT)Technical Paper Link
    A technical paper titled “Current-induced switching of a van der Waals ferromagnet at room temperature” was published by researchers at Massachusetts Institute of Technology (MIT). Abstract: “Recent discovery of emergent magnetism in van der Waals magnetic materials (vdWMM) has broadened the material space for developing spintronic devices for energy-efficient computation. While there has been appreciable progress in vdWMM discovery, a solution for non-volatile, deterministic switching of vdWMMs
     

Ultrathin vdW Ferromagnet at Room Temperature (MIT)

A technical paper titled “Current-induced switching of a van der Waals ferromagnet at room temperature” was published by researchers at Massachusetts Institute of Technology (MIT).

Abstract:

“Recent discovery of emergent magnetism in van der Waals magnetic materials (vdWMM) has broadened the material space for developing spintronic devices for energy-efficient computation. While there has been appreciable progress in vdWMM discovery, a solution for non-volatile, deterministic switching of vdWMMs at room temperature has been missing, limiting the prospects of their adoption into commercial spintronic devices. Here, we report the first demonstration of current-controlled non-volatile, deterministic magnetization switching in a vdW magnetic material at room temperature. We have achieved spin-orbit torque (SOT) switching of the PMA vdW ferromagnet Fe3GaTe2  using a Pt spin-Hall layer up to 320 K, with a threshold switching current density as low as Jsw = 1.69 × 106 A cm-2 at room temperature. We have also quantitatively estimated the anti-damping-like SOT efficiency of our Fe3GaTe2/Pt bilayer system to be ξDL = 0:093, using the second harmonic Hall voltage measurement technique. These results mark a crucial step in making vdW magnetic materials a viable choice for the development of scalable, energy-efficient spintronic devices.”

Find the technical paper here. Published February 2024. MIT’s related news article and video is here.

Kajale, S.N., Nguyen, T., Chao, C.A. et al. Current-induced switching of a van der Waals ferromagnet at room temperature. Nat Commun 15, 1485 (2024). https://doi.org/10.1038/s41467-024-45586-4

 

 

The post Ultrathin vdW Ferromagnet at Room Temperature (MIT) appeared first on Semiconductor Engineering.

  • ✇Semiconductor Engineering
  • Impact of Scaling and BEOL Technology Solutions At The 7nm Node On MRAMTechnical Paper Link
    A technical paper titled “Impact of Technology Scaling and Back-End-of-the-Line Technology Solutions on Magnetic Random-Access Memories” was published by researchers at Georgia Institute of Technology. Abstract: “While magnetic random-access memories (MRAMs) are promising because of their nonvolatility, relatively fast speeds, and high endurance, there are major challenges in adopting them for the advanced technology nodes. One of the major challenges in scaling MRAM devices is caused by the eve
     

Impact of Scaling and BEOL Technology Solutions At The 7nm Node On MRAM

A technical paper titled “Impact of Technology Scaling and Back-End-of-the-Line Technology Solutions on Magnetic Random-Access Memories” was published by researchers at Georgia Institute of Technology.

Abstract:

“While magnetic random-access memories (MRAMs) are promising because of their nonvolatility, relatively fast speeds, and high endurance, there are major challenges in adopting them for the advanced technology nodes. One of the major challenges in scaling MRAM devices is caused by the ever-increasing resistances of interconnects. In this article, we first study the impact of shrunk interconnect dimensions on MRAM performance at various technology nodes. Then, we investigate the impact of various potential back-end-of-the-line (BEOL) technology solutions at the 7 nm node. Based on interconnect resistance values from technology computer-aided design (TCAD) simulations and MRAM device characteristics from experimentally validated/calibrated physical models, we quantify the potential array-level performance of MRAM using SPICE simulations. We project that some potential BEOL technology solutions can reduce the write energy by up to 34.6% with spin-orbit torque (SOT) MRAM and 29.0% with spin-transfer torque (STT) MRAM. We also observe up to 21.4% reduction in the read energy of the SOT-MRAM arrays.”

Find the technical paper here. Published January 2024.

P. Kumar, D. E. Shim, S. Narla and A. Naeemi, “Impact of Technology Scaling and Back-End-of-the-Line Technology Solutions on Magnetic Random-Access Memories,” in IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 10, pp. 13-21, 2024, doi: 10.1109/JXCDC.2024.3357625.

Related Reading
MRAM Getting More Attention At Smallest Nodes
Why this 25-year-old technology may be the memory of choice for leading edge designs and in automotive applications.
ReRAM Seeks To Replace NOR
There is increased interest in ReRAM for embedded computing, especially in automotive applications, as more of its known issues are solved. Nevertheless, there is no one-size-fits-all NVM.

The post Impact of Scaling and BEOL Technology Solutions At The 7nm Node On MRAM appeared first on Semiconductor Engineering.

❌
❌