FreshRSS

Normální zobrazení

Jsou dostupné nové články, klikněte pro obnovení stránky.
PředevčíremHlavní kanál
  • ✇Semiconductor Engineering
  • Power Electronic Packaging for Discrete DiesTechnical Paper Link
    A technical paper titled “Substrate Embedded Power Electronics Packaging for Silicon Carbide MOSFETs” was published by researchers at University of Cambridge, University of Warwick, Chongqing University, and SpaceX. Abstract: “This paper proposes a new power electronic packaging for discrete dies, namely Standard Cell which consists of a step-etched active metal brazed (AMB) substrate and a flexible printed circuit board (flex-PCB). The standard cell exhibits high thermal conductivity, complete
     

Power Electronic Packaging for Discrete Dies

21. Červen 2024 v 00:19

A technical paper titled “Substrate Embedded Power Electronics Packaging for Silicon Carbide MOSFETs” was published by researchers at University of Cambridge, University of Warwick, Chongqing University, and SpaceX.

Abstract:

“This paper proposes a new power electronic packaging for discrete dies, namely Standard Cell which consists of a step-etched active metal brazed (AMB) substrate and a flexible printed circuit board (flex-PCB). The standard cell exhibits high thermal conductivity, complete electrical insulation, and low stray inductance, thereby enhancing the performance of SiC MOSFET devices. The standard cell has a stray power loop inductance of less than 1 nH and a gate loop inductance of less than 1.5 nH . The standard cell has a flat body with surface-mounting electrical connections on one side and direct thermal connections on the other. The use of flex-PCB die interconnection enables maximum utilization of source pads while providing a flexible gate-source connection and the converter PCB. This paper presents the design concept of the standard cell and experimentally validates its effectiveness in a converter system.”

Find the technical paper here. Published May 2024.

A. Janabi et al., “Substrate Embedded Power Electronics Packaging for Silicon Carbide MOSFETs,” in IEEE Transactions on Power Electronics, doi: 10.1109/TPEL.2024.3396779.

Related Reading
Big Shifts In Power Electronics Packaging
Packages are becoming more complex to endure high power, high temperature conditions across a variety of applications.
Power Semiconductors: A Deep Dive Into Materials, Manufacturing & Business
Premium Content: How these devices are made and work, challenges in manufacturing, related startups, as well as the reasons why so much effort and resources are being spent to develop new materials, and new processes.</

The post Power Electronic Packaging for Discrete Dies appeared first on Semiconductor Engineering.

Comparing Thermal Properties In Molybdenum Substrate To Si And Glass For A System-On-Foil Integration (RIT, Lux)

31. Květen 2024 v 18:39

A technical paper titled “Comparative Analysis of Thermal Properties in Molybdenum Substrate to Silicon and Glass for a System-on-Foil Integration” was published by researchers at Rochester Institute of Technology and Lux Semiconductors.

Abstract:

“Advanced electronics technology is moving towards smaller footprints and higher computational power. In order to achieve this, advanced packaging techniques are currently being considered, including organic, glass, and semiconductor-based substrates that allow for 2.5D or 3D integration of chips and devices. Metal-core substrates are a new alternative with similar properties to those of semiconductor-based substrates but with the added benefits of higher flexibility and metal ductility. This work comprehensively compares the thermal properties of a novel metal-based substrate, molybdenum, and silicon and fused silica glass substrates in the context of system-on-foil (SoF) integration. A simple electronic technique is used to simulate the heat generated by a typical CPU and to measure the heat dissipation properties of the substrates. The results indicate that molybdenum and silicon are able to effectively dissipate a continuous power density of 2.3 W/mm2 as the surface temperature only increases by ~15°C. In contrast, the surface temperature of fused silica glass substrates increases by >140°C for the same applied power. These simple techniques and measurements were validated with infrared camera measurements as well as through finite element analysis via COMSOL simulation. The results validate the use of molybdenum as an advanced packaging substrate and can be used to characterize new substrates and approaches for advanced packaging.”

Find the technical paper here. Published May 2024.

Huang, Tzu-Jung, Tobias Kiebala, Paul Suflita, Chad Moore, Graeme Housser, Shane McMahon, and Ivan Puchades. 2024. “Comparative Analysis of Thermal Properties in Molybdenum Substrate to Silicon and Glass for a System-on-Foil Integration” Electronics 13, no. 10: 1818. https://doi.org/10.3390/electronics13101818

Related Reading
The Race To Glass Substrates
Replacing silicon and organic substrates requires huge shifts in manufacturing, creating challenges that will take years to iron out.

 

The post Comparing Thermal Properties In Molybdenum Substrate To Si And Glass For A System-On-Foil Integration (RIT, Lux) appeared first on Semiconductor Engineering.

❌
❌