FreshRSS

Normální zobrazení

Jsou dostupné nové články, klikněte pro obnovení stránky.
PředevčíremHlavní kanál
  • ✇Ars Technica - All content
  • How the Moon got a makeoverElizabeth Rayne
    Enlarge (credit: NASA Goddard/ASU) Our Moon may appear to shine peacefully in the night sky, but billions of years ago, it was given a facial by volcanic turmoil. One question that has gone unanswered for decades is why there are more titanium-rich volcanic rocks, such as ilmenite, on the near side as opposed to the far side. Now a team of researchers at Arizona Lunar and Planetary Laboratory are proposing a possible explanation for that. The lunar surface was once flooded by
     

How the Moon got a makeover

11. Květen 2024 v 12:00
Image of the moon.

Enlarge (credit: NASA Goddard/ASU)

Our Moon may appear to shine peacefully in the night sky, but billions of years ago, it was given a facial by volcanic turmoil.

One question that has gone unanswered for decades is why there are more titanium-rich volcanic rocks, such as ilmenite, on the near side as opposed to the far side. Now a team of researchers at Arizona Lunar and Planetary Laboratory are proposing a possible explanation for that.

The lunar surface was once flooded by a bubbling magma ocean, and after the magma ocean had hardened, there was an enormous impact on the far side. Heat from this impact spread to the near side and made the crust unstable, causing sheets of heavier and denser minerals on the surface to gradually sink deep into the mantle. These melted again and were belched out by volcanoes. Lava from these eruptions (more of which happened on the near side) ended up in what are now titanium-rich flows of volcanic rock. In other words, the Moon’s old face vanished, only to resurface.

Read 12 remaining paragraphs | Comments

  • ✇Ars Technica - All content
  • Io: New image of a lake of fire, signs of permanent volcanismJohn Timmer
    Enlarge (credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt/Thomas Thomopoulos) Ever since the Voyager mission sent home images of Jupiter's moon Io spewing material into space, we've gradually built up a clearer picture of Io's volcanic activity. It slowly became clear that Io, which is a bit smaller than Mercury, is the most volcanically active body in the Solar System, with all that activity driven by the gravitational strain caused by Jupiter and its three other giant mo
     

Io: New image of a lake of fire, signs of permanent volcanism

19. Duben 2024 v 20:17
Io: New image of a lake of fire, signs of permanent volcanism

Enlarge (credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt/Thomas Thomopoulos)

Ever since the Voyager mission sent home images of Jupiter's moon Io spewing material into space, we've gradually built up a clearer picture of Io's volcanic activity. It slowly became clear that Io, which is a bit smaller than Mercury, is the most volcanically active body in the Solar System, with all that activity driven by the gravitational strain caused by Jupiter and its three other giant moons. There is so much volcanism that its surface has been completely remodeled, with no signs of impact craters.

A few more details about its violence came to light this week, with new images being released of the moon's features, including an island in a lake of lava, taken by the Juno orbiter. At the same time, imaging done using an Earth-based telescope has provided some indications that this volcanism has been reshaping Io from almost the moment it formed.

Fiery, glassy lakes

The Juno orbiter's mission is primarily focused on studying Jupiter, including the dynamics of its storms and its internal composition. But many of its orbital passes have taken it right past Io, and this week, the Jet Propulsion Laboratory released some of the best images from these flybys. They include a shot of Loki Patera, a lake of lava that has an island within it. Also featured: the impossibly sheer slopes of Io's Steeple Mountain.

Read 12 remaining paragraphs | Comments

❌
❌