ML Method To Predict IR Drop Levels
A new technical paper titled “IR drop Prediction Based on Machine Learning and Pattern Reduction” was published by researchers at National Tsing Hua University, National Taiwan University of Science and Technology, and MediaTek.
Abstract (partial)
“In this paper, we propose a machine learning-based method to predict IR drop levels and present an algorithm for reducing simulation patterns, which could reduce the time and computing resources required for IR drop analysis within the ECO flow. Experimental results show that our approach can reduce the number of patterns by approximately 50%, thereby decreasing the analysis time while maintaining accuracy.”
Find the technical paper here. Published June 2024.
Yong-Fong Chang, Yung-Chih Chen, Yu-Chen Cheng, Shu-Hong Lin, Che-Hsu Lin, Chun-Yuan Chen, Yu-Hsuan Chen, Yu-Che Lee, Jia-Wei Lin, Hsun-Wei Pao, Shih-Chieh Chang, Yi-Ting Li, and Chun-Yao Wang. 2024. IR drop Prediction Based on Machine Learning and Pattern Reduction. In Proceedings of the Great Lakes Symposium on VLSI 2024 (GLSVLSI ’24). Association for Computing Machinery, New York, NY, USA, 516–519. https://doi.org/10.1145/3649476.3658775
The post ML Method To Predict IR Drop Levels appeared first on Semiconductor Engineering.