A technical paper titled “DRAMScope: Uncovering DRAM Microarchitecture and Characteristics by Issuing Memory Commands” was published by researchers at Seoul National University and University of Illinois at Urbana-Champaign.
Abstract:
“The demand for precise information on DRAM microarchitectures and error characteristics has surged, driven by the need to explore processing in memory, enhance reliability, and mitigate security vulnerability. Nonetheless, DRAM manufacturers have disclosed only a limited amount of information, making it difficult to find specific information on their DRAM microarchitectures. This paper addresses this gap by presenting more rigorous findings on the microarchitectures of commodity DRAM chips and their impacts on the characteristics of activate-induced bitflips (AIBs), such as RowHammer and RowPress. The previous studies have also attempted to understand the DRAM microarchitectures and associated behaviors, but we have found some of their results to be misled by inaccurate address mapping and internal data swizzling, or lack of a deeper understanding of the modern DRAM cell structure. For accurate and efficient reverse-engineering, we use three tools: AIBs, retention time test, and RowCopy, which can be cross-validated. With these three tools, we first take a macroscopic view of modern DRAM chips to uncover the size, structure, and operation of their subarrays, memory array tiles (MATs), and rows. Then, we analyze AIB characteristics based on the microscopic view of the DRAM microarchitecture, such as 6F^2 cell layout, through which we rectify misunderstandings regarding AIBs and discover a new data pattern that accelerates AIBs. Lastly, based on our findings at both macroscopic and microscopic levels, we identify previously unknown AIB vulnerabilities and propose a simple yet effective protection solution.”
Find the technical paper here. Published May 2024.
Nam, Hwayong, Seungmin Baek, Minbok Wi, Michael Jaemin Kim, Jaehyun Park, Chihun Song, Nam Sung Kim, and Jung Ho Ahn. “DRAMScope: Uncovering DRAM Microarchitecture and Characteristics by Issuing Memory Commands.” arXiv preprint arXiv:2405.02499 (2024).
Related Reading
Securing DRAM Against Evolving Rowhammer Threats
A multi-layered, system-level approach is crucial to DRAM protection.
The post DRAM Microarchitectures And Their Impacts On Activate-Induced Bitflips Such As RowHammer appeared first on Semiconductor Engineering.