FreshRSS

Normální zobrazení

Jsou dostupné nové články, klikněte pro obnovení stránky.
PředevčíremHlavní kanál

Scientists observe record-setting electron mobility in a new crystal film

A material with a high electron mobility is like a highway without traffic. Any electrons that flow into the material experience a commuter’s dream, breezing through without any obstacles or congestion to slow or scatter them off their path.

The higher a material’s electron mobility, the more efficient its electrical conductivity, and the less energy is lost or wasted as electrons zip through. Advanced materials that exhibit high electron mobility will be essential for more efficient and sustainable electronic devices that can do more work with less power.

Now, physicists at MIT, the Army Research Lab, and elsewhere have achieved a record-setting level of electron mobility in a thin film of ternary tetradymite — a class of mineral that is naturally found in deep hydrothermal deposits of gold and quartz.

For this study, the scientists grew pure, ultrathin films of the material, in a way that minimized defects in its crystalline structure. They found that this nearly perfect film — much thinner than a human hair — exhibits the highest electron mobility in its class.

The team was able to estimate the material’s electron mobility by detecting quantum oscillations when electric current passes through. These oscillations are a signature of the quantum mechanical behavior of electrons in a material. The researchers detected a particular rhythm of oscillations that is characteristic of high electron mobility — higher than any ternary thin films of this class to date.

“Before, what people had achieved in terms of electron mobility in these systems was like traffic on a road under construction — you’re backed up, you can’t drive, it’s dusty, and it’s a mess,” says Jagadeesh Moodera, a senior research scientist in MIT’s Department of Physics. “In this newly optimized material, it’s like driving on the Mass Pike with no traffic.”

The team’s results, which appear today in the journal Materials Today Physics, point to ternary tetradymite thin films as a promising material for future electronics, such as wearable thermoelectric devices that efficiently convert waste heat into electricity. (Tetradymites are the active materials that cause the cooling effect in commercial thermoelectric coolers.) The material could also be the basis for spintronic devices, which process information using an electron’s spin, using far less power than conventional silicon-based devices.

The study also uses quantum oscillations as a highly effective tool for measuring a material’s electronic performance.

“We are using this oscillation as a rapid test kit,” says study author Hang Chi, a former research scientist at MIT who is now at the University of Ottawa. “By studying this delicate quantum dance of electrons, scientists can start to understand and identify new materials for the next generation of technologies that will power our world.”

Chi and Moodera’s co-authors include Patrick Taylor, formerly of MIT Lincoln Laboratory, along with Owen Vail and Harry Hier of the Army Research Lab, and Brandi Wooten and Joseph Heremans of Ohio State University.

Beam down

The name “tetradymite” derives from the Greek “tetra” for “four,” and “dymite,” meaning “twin.” Both terms describe the mineral’s crystal structure, which consists of rhombohedral crystals that are “twinned” in groups of four — i.e. they have identical crystal structures that share a side.

Tetradymites comprise combinations of bismuth, antimony tellurium, sulfur, and selenium. In the 1950s, scientists found that tetradymites exhibit semiconducting properties that could be ideal for thermoelectric applications: The mineral in its bulk crystal form was able to passively convert heat into electricity.

Then, in the 1990s, the late Institute Professor Mildred Dresselhaus proposed that the mineral’s thermoelectric properties might be significantly enhanced, not in its bulk form but within its microscopic, nanometer-scale surface, where the interactions of electrons is more pronounced. (Heremans happened to work in Dresselhaus’ group at the time.)

“It became clear that when you look at this material long enough and close enough, new things will happen,” Chi says. “This material was identified as a topological insulator, where scientists could see very interesting phenomena on their surface. But to keep uncovering new things, we have to master the material growth.”

To grow thin films of pure crystal, the researchers employed molecular beam epitaxy — a method by which a beam of molecules is fired at a substrate, typically in a vacuum, and with precisely controlled temperatures. When the molecules deposit on the substrate, they condense and build up slowly, one atomic layer at a time. By controlling the timing and type of molecules deposited, scientists can grow ultrathin crystal films in exact configurations, with few if any defects.

“Normally, bismuth and tellurium can interchange their position, which creates defects in the crystal,” co-author Taylor explains. “The system we used to grow these films came down with me from MIT Lincoln Laboratory, where we use high purity materials to minimize impurities to undetectable limits. It is the perfect tool to explore this research.”

Free flow

The team grew thin films of ternary tetradymite, each about 100 nanometers thin. They then tested the film’s electronic properties by looking for Shubnikov-de Haas quantum oscillations — a phenomenon that was discovered by physicists Lev Shubnikov and Wander de Haas, who found that a material’s electrical conductivity can oscillate when exposed to a strong magnetic field at low temperatures. This effect occurs because the material’s electrons fill up specific energy levels that shift as the magnetic field changes.

Such quantum oscillations could serve as a signature of a material’s electronic structure, and the ways in which electrons behave and interact. Most notably for the MIT team, the oscillations could determine a material’s electron mobility: If oscillations exist, it must mean that the material’s electrical resistance is able to change, and by inference, electrons can be mobile, and made to easily flow.

The team looked for signs of quantum oscillations in their new films, by first exposing them to ultracold temperatures and a strong magnetic field, then running an electric current through the film and measuring the voltage along its path, as they tuned the magnetic field up and down.

“It turns out, to our great joy and excitement, that the material’s electrical resistance oscillates,” Chi says. “Immediately, that tells you that this has very high electron mobility.”

Specifically, the team estimates that the ternary tetradymite thin film exhibits an electron mobility of 10,000 cm2/V-s — the highest mobility of any ternary tetradymite film yet measured. The team suspects that the film’s record mobility has something to do with its low defects and impurities, which they were able to minimize with their precise growth strategies. The fewer a material’s defects, the fewer obstacles an electron encounters, and the more freely it can flow.

“This is showing it’s possible to go a giant step further, when properly controlling these complex systems,” Moodera says. “This tells us we’re in the right direction, and we have the right system to proceed further, to keep perfecting this material down to even much thinner films and proximity coupling for use in future spintronics and wearable thermoelectric devices.”

This research was supported in part by the Army Research Office, National Science Foundation, Office of Naval Research, Canada Research Chairs Program and Natural Sciences and Engineering Research Council of Canada.

© Credit: Courtesy of the researchers; edited by MIT News

Researchers have grown thin films of ternary tetradymite (shown) that exhibit record high electron mobility.

A new way to spot life-threatening infections in cancer patients

Chemotherapy and other treatments that take down cancer cells can also destroy patients’ immune cells. Every year, that leads tens of thousands of cancer patients with weakened immune systems to contract infections that can turn deadly if unmanaged.

Doctors must strike a balance between giving enough chemotherapy to eradicate cancer while not giving so much that the patient’s white blood cell count gets dangerously low, a condition known as neutropenia. It can also leave patients socially isolated in between rounds of chemotherapy. Currently, the only way for doctors to monitor their patients’ white blood cells is through blood tests.

Now Leuko is developing an at-home white blood cell monitor to give doctors a more complete view of their patients’ health remotely. Rather than drawing blood, the device uses light to look through the skin at the top of the fingernail, and artificial intelligence to analyze and detect when white blood cells reach dangerously low levels.

The technology was first conceived of by researchers at MIT in 2015. Over the next few years, they developed a prototype and conducted a small study to validate their approach. Today, Leuko’s devices have accurately detected low white blood cell counts in hundreds of cancer patients, all without drawing a single drop of blood.

“We expect this to bring a clear improvement in the way that patients are monitored and cared for in the outpatient setting,” says Leuko co-founder and CTO Ian Butterworth, a former research engineer in MIT’s Research Laboratory of Electronics. “I also think there’s a more personal side of this for patients. These people can feel vulnerable around other people, and they don't currently have much they can do. That means that if they want to see their grandkids or see family, they’re constantly wondering, ‘Am I at high risk?’”

The company has been working with the Food and Drug Administration (FDA) over the last four years to design studies confirming their device is accurate and easy to use by untrained patients. Later this year, they expect to begin a pivotal study that will be used to register for FDA approval.

Once the device becomes an established tool for patient monitoring, Leuko’s team believes it could also give doctors a new way to optimize cancer treatment.

“Some of the physicians that we have talked to are very excited because they think future versions of our product could be used to personalize the dose of chemotherapy given to each patient,” says Leuko co-founder and CEO Carlos Castro-Gonzalez, a former postdoc at MIT. “If a patient is not becoming neutropenic, that could be a sign that you could increase the dose. Then every treatment could be based on how each patient is individually reacting.”

Monitoring immune health

Leuko co-founders Ian Butterworth, Carlos Castro-Gonzalez, Aurélien Bourquard, and Alvaro Sanchez-Ferro came to MIT in 2013 as part of the Madrid-MIT M+Vision Consortium, which was a collaboration between MIT and Madrid and is now part of MIT linQ. The program brought biomedical researchers from around the world to MIT to work on translational projects with institutions around Boston and Madrid.

The program, which was originally run out of MIT’s Research Laboratory of Electronics, challenged members to tackle huge unmet needs in medicine and connected them with MIT faculty members from across the Institute to build solutions. Leuko’s founders also received support from MIT’s entrepreneurial ecosystem, including the Venture Mentoring Service, the Sandbox Innovation Fund, the Martin Trust Center for Entrepreneurship, and the Deshpande Center. After its MIT spinout, the company raised seed and series A financing rounds led by Good Growth Capital and HTH VC.

“I didn’t even realize that entrepreneurship was a career option for a PhD [like myself],” Castro-Gonzalez says. “I was thinking that after the fellowship I would apply for faculty positions. That was the career path I had in mind, so I was very excited about the focus at MIT on trying to translate science into products that people can benefit from.”

Leuko’s founders knew people with cancer stood to benefit the most from a noninvasive white blood cell monitor. Unless patients go to the hospital, they can currently monitor only their temperature from home. If they show signs of a fever, they’re advised to go to the emergency room immediately.

“These infections happen quite frequently,” Sanchez-Ferro says. “One in every six cancer patients undergoing chemotherapy will develop an infection where their white blood cells are critically low. Some of those infections unfortunately end in deaths for patients, which is particularly terrible because they’re due to the treatment rather than the disease. [Infections] also mean the chemotherapy gets interrupted, which increases negative clinical outcomes for patients.”

Leuko’s optical device works through imaging the capillaries, or small blood vessels, just above the fingernail, which are more visible and already used by doctors to assess other aspects of vascular health. The company’s portable device analyzes white blood cell activity to detect critically low levels for care teams.

In a study of 44 patients in 2019, Leuko’s team showed the approach was able to detect when white blood cell levels dropped below a critical threshold, with minimal false positives. The team has since developed a product that another, larger study showed unsupervised patients can use at home to get immune information to doctors.

“We work completely noninvasively, so you can perform white blood cell measurements at home and much more frequently than what’s possible today,” Bourquard says. “The key aspect of this is it allows doctors to identify patients whose immune systems become so weak they’re at high risk of infection. If doctors have that information, they can provide preventative treatment in the form of antibiotics and growth factors. Research estimates that would eliminate 50 percent of hospitalizations.”

Expanding applications

Leuko’s founders believe their device will help physicians make more informed care decisions for patients. They also believe the device holds promise for monitoring patient health across other conditions.

“The long-term vision for the company is making this available to other patient populations that can also benefit from increased monitoring of their immune system,” Castro-Gonzalez says. “That includes patients with multiple sclerosis, autoimmune diseases, organ transplants, and patients that are rushed into the emergency room.”

Leuko’s team even sees a future where their device could be used to monitor other biomarkers in the blood.

“We believe this could be a platform technology,” Castro-Gonzalez says. “We get these noninvasive videos of the blood flowing through the capillaries, so part of the vision for the company is measuring other parameters in the blood beyond white blood cells, including hemoglobin, red blood cells, and platelets. That’s all part of our roadmap for the future.”

© Credit: iStock

Leuko is developing an at-home white blood cell monitor to give doctors a more comprehensive view of their chemotherapy patients’ health.
  • ✇MIT News - Nanoscience and nanotechnology | MIT.nano
  • Pushing material boundaries for better electronicsJennifer Chu | MIT News
    Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim. A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics. His research aims to push electronics past the in
     

Pushing material boundaries for better electronics

Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim.

A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics.

His research aims to push electronics past the inherent limits of silicon — a material that has reliably powered transistors and most other electronic elements but is reaching a performance limit as more computing power is packed into ever smaller devices.

Today, Kim and his students at MIT are exploring materials, devices, and systems that could take over where silicon leaves off. Kim is applying his insights to design next-generation devices, including low-power, high-performance transistors and memory devices, artificial intelligence chips, ultra-high-definition micro-LED displays, and flexible electronic “skin.” Ultimately, he envisions such beyond-silicon devices could be built into supercomputers small enough to fit in your pocket.

The innovations that have come out of his research are recorded in more than 200 issued U.S. patents and 70 research papers — an extensive list that he and his students continue to grow.

Kim credits many of his breakthroughs to the fundamentals he learned in his university days. In fact, he has carried his college textbooks and notes with him with every move. Today, he keeps the undergraduate notes — written in a light and meticulous graphite and ink — on a shelf nearest to his MIT desk, close at hand. He references them in his own class lectures and presentations, and when brainstorming research solutions.

“These textbooks are all in my brain now,” Kim says. “I’ve learned that if you completely understand the fundamentals, you can solve any problem.”

Fundamental shift

Kim wasn’t always a model student. Growing up in Seoul, South Korea, he was fixed on a musical career. He had a passion for singing and was bored by most other high school subjects.

“It was very monotonic,” Kim recalls. “My motivation for high school subjects was very low.”

After graduating high school, he enrolled in a materials science program at Hongik University, where he was lucky to met professors who had graduated from MIT and who later motivated him to study in the United States. But, Kim spent his first year there trying to make it as a musician. He wrote and sang songs that he recorded and sent to promoters, and went to multiple auditions. But after a year, he was faced with no call-backs, and a hard question.

“What should I do? It was a crisis to me,” Kim says.

In his second year, he decided to give materials science a go. When he sat in on his first class, he was surprised to find that the subject — the structure and behavior of materials at the atomic scale — made him want to learn more.

“My first year, my GPA was almost zero because I didn’t attend class, and was going to be kicked out,” Kim says. “Then from my second year on, I really loved every single subject in materials science. People who saw me in the library were surprised: ‘What are you doing here, without a guitar?’ I must have read these textbooks more than 10 times, and felt I really understood everything fundamental.”

Back to basics

He took this newfound passion to Seoul National University, where he enrolled in the materials science master’s program and learned to apply the ideas he absorbed to hands-on research problems. Metallurgy was a dominant field at the time, and Kim was assigned to experiment with high-temperature alloys — mixing and melting metallic powders to create materials that could be used in high-performance engines.

After completing his master’s, Kim wanted to continue with a PhD, overseas. But to do so, he first had to serve in the military. He spent the next two and a half years in the Korean air force, helping to maintain and refuel aircraft, and inventory their parts. All the while, he prepared applications to graduate schools abroad.

In 2003, after completing his service, he headed overseas, where he was accepted to the materials science graduate program at the University of California at Los Angeles with a fellowship.

“When I came out of the airplane and went to the dorm for the first day, people were drinking Corona on the balcony, playing music, and there was beautiful weather, and I thought, this is where I’m supposed to be!” Kim recalls.

For his PhD, he began to dive into the microscopic world of electronic materials, seeking ways to manipulate them to make faster electronics. The subject was a focus for his advisor, who previously worked at Bell Labs, where many computing innovations originated at the time.

“A lot of the papers I was reading were from Bell Labs, and IBM T.J. Watson, and I was so impressed, and thought: I really want to be a scientist there. That was my dream,” Kim says.

During his PhD program, he reached out to a scientist at IBM whose name kept coming up in the papers Kim was reading. In his initial letter, Kim wrote with a question about his own PhD work, which tackled a hard industry problem: how to stretch, or “strain,” silicon to minimize defects that would occur as more transistors are packed on a chip. 

The query opened a dialogue, and Kim eventually inquired and was accepted to an internship at the IBM T.J. Watson Research Center, just outside New York City. Soon after he arrived, his manager pitched him a challenge: He might be hired full-time if he could solve a new, harder problem, having to do with replacing silicon.

At the time, the electronics industry was looking to germanium as a possible successor to silicon. The material can conduct electrons at even smaller scales, which would enable germanium to be made into even tinier transistors, for faster, smaller, and more powerful devices. But there was no reliable way for germanium to be “doped” — an essential process that replaces some of a material’s atoms with another type of atom in a way that controls how electrons flow through the material.

“My manager told me he didn’t expect me to solve this. But I really wanted the job,” Kim says. “So day and night, I thought, how to solve this? And I always went back to the textbooks.”

Those textbooks reminded him of a fundamental rule: Replacing one atom with another would work well if both atoms were of similar size. This revelation triggered an idea. Perhaps germanium could be doped with a combination of two different atoms with an average atomic size that is similar to germanium’s.

“I came up with this idea, and right after, IBM showed that it worked. I was so amazed,” Kim says. “From that point, research became my passion. I did it because it was just so fun. Singing is not so different from performing research.”

As promised, he was hired as a postdoc and soon after, promoted to research staff member — a title he carried, literally, with pride.

“I was feeling so happy to be there,” Kim says. “I even wore my IBM badge to restaurants, and everywhere I went.”

Throughout his time at IBM, he learned to focus on research that directly impacts everyday human life, and how to apply the fundamentals to develop next-generation products.

“IBM really raised me up as an engineer who can identify the problems in an industry and find creative solutions to tackle the challenges,” he says.

Cycle of life

And yet, Kim felt he could do more. He was working on boundary-pushing research at one of the leading innovation hubs in the country, where “out-of-the-box” thinking was encouraged, and experimentally tested. But he wanted to explore beyond the company’s research portfolio, and also, find a way to pursue research not just as a profession but as a passion.

“My experience taught me that you can lead a very happy life as an engineer or scientist if your research becomes your hobby,” Kim says. “I wanted to teach this cycle — of happiness, research, and passion — to young people and help PhD students develop like artists or singers.”

In 2015, he packed his bags for MIT, where he accepted a junior faculty position in the Department of Mechanical Engineering. His first impressions upon arriving at the Institute?

“Freedom,” Kim says. “For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things.”

Since he’s put down roots on campus, he has built up a highly productive research group, focused on fabricating ultra-thin, stackable, high-performance electronic materials and devices, which Kim envisions could be used to build hybrid electronic systems as small as a fingernail and as powerful as a supercomputer. He credits the group’s many innovations to the more than 40 students, postdocs, and research scientists who have contributed to his lab.

“I hope this is where they can learn that research can be an art,” Kim says. “To students especially, I hope they see that, if they enjoy what they do, then they can be whatever they want to be.”

© Photo: Jake Belcher

“For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things,” says Jeehwan Kim.

Scientists observe record-setting electron mobility in a new crystal film

A material with a high electron mobility is like a highway without traffic. Any electrons that flow into the material experience a commuter’s dream, breezing through without any obstacles or congestion to slow or scatter them off their path.

The higher a material’s electron mobility, the more efficient its electrical conductivity, and the less energy is lost or wasted as electrons zip through. Advanced materials that exhibit high electron mobility will be essential for more efficient and sustainable electronic devices that can do more work with less power.

Now, physicists at MIT, the Army Research Lab, and elsewhere have achieved a record-setting level of electron mobility in a thin film of ternary tetradymite — a class of mineral that is naturally found in deep hydrothermal deposits of gold and quartz.

For this study, the scientists grew pure, ultrathin films of the material, in a way that minimized defects in its crystalline structure. They found that this nearly perfect film — much thinner than a human hair — exhibits the highest electron mobility in its class.

The team was able to estimate the material’s electron mobility by detecting quantum oscillations when electric current passes through. These oscillations are a signature of the quantum mechanical behavior of electrons in a material. The researchers detected a particular rhythm of oscillations that is characteristic of high electron mobility — higher than any ternary thin films of this class to date.

“Before, what people had achieved in terms of electron mobility in these systems was like traffic on a road under construction — you’re backed up, you can’t drive, it’s dusty, and it’s a mess,” says Jagadeesh Moodera, a senior research scientist in MIT’s Department of Physics. “In this newly optimized material, it’s like driving on the Mass Pike with no traffic.”

The team’s results, which appear today in the journal Materials Today Physics, point to ternary tetradymite thin films as a promising material for future electronics, such as wearable thermoelectric devices that efficiently convert waste heat into electricity. (Tetradymites are the active materials that cause the cooling effect in commercial thermoelectric coolers.) The material could also be the basis for spintronic devices, which process information using an electron’s spin, using far less power than conventional silicon-based devices.

The study also uses quantum oscillations as a highly effective tool for measuring a material’s electronic performance.

“We are using this oscillation as a rapid test kit,” says study author Hang Chi, a former research scientist at MIT who is now at the University of Ottawa. “By studying this delicate quantum dance of electrons, scientists can start to understand and identify new materials for the next generation of technologies that will power our world.”

Chi and Moodera’s co-authors include Patrick Taylor, formerly of MIT Lincoln Laboratory, along with Owen Vail and Harry Hier of the Army Research Lab, and Brandi Wooten and Joseph Heremans of Ohio State University.

Beam down

The name “tetradymite” derives from the Greek “tetra” for “four,” and “dymite,” meaning “twin.” Both terms describe the mineral’s crystal structure, which consists of rhombohedral crystals that are “twinned” in groups of four — i.e. they have identical crystal structures that share a side.

Tetradymites comprise combinations of bismuth, antimony tellurium, sulfur, and selenium. In the 1950s, scientists found that tetradymites exhibit semiconducting properties that could be ideal for thermoelectric applications: The mineral in its bulk crystal form was able to passively convert heat into electricity.

Then, in the 1990s, the late Institute Professor Mildred Dresselhaus proposed that the mineral’s thermoelectric properties might be significantly enhanced, not in its bulk form but within its microscopic, nanometer-scale surface, where the interactions of electrons is more pronounced. (Heremans happened to work in Dresselhaus’ group at the time.)

“It became clear that when you look at this material long enough and close enough, new things will happen,” Chi says. “This material was identified as a topological insulator, where scientists could see very interesting phenomena on their surface. But to keep uncovering new things, we have to master the material growth.”

To grow thin films of pure crystal, the researchers employed molecular beam epitaxy — a method by which a beam of molecules is fired at a substrate, typically in a vacuum, and with precisely controlled temperatures. When the molecules deposit on the substrate, they condense and build up slowly, one atomic layer at a time. By controlling the timing and type of molecules deposited, scientists can grow ultrathin crystal films in exact configurations, with few if any defects.

“Normally, bismuth and tellurium can interchange their position, which creates defects in the crystal,” co-author Taylor explains. “The system we used to grow these films came down with me from MIT Lincoln Laboratory, where we use high purity materials to minimize impurities to undetectable limits. It is the perfect tool to explore this research.”

Free flow

The team grew thin films of ternary tetradymite, each about 100 nanometers thin. They then tested the film’s electronic properties by looking for Shubnikov-de Haas quantum oscillations — a phenomenon that was discovered by physicists Lev Shubnikov and Wander de Haas, who found that a material’s electrical conductivity can oscillate when exposed to a strong magnetic field at low temperatures. This effect occurs because the material’s electrons fill up specific energy levels that shift as the magnetic field changes.

Such quantum oscillations could serve as a signature of a material’s electronic structure, and the ways in which electrons behave and interact. Most notably for the MIT team, the oscillations could determine a material’s electron mobility: If oscillations exist, it must mean that the material’s electrical resistance is able to change, and by inference, electrons can be mobile, and made to easily flow.

The team looked for signs of quantum oscillations in their new films, by first exposing them to ultracold temperatures and a strong magnetic field, then running an electric current through the film and measuring the voltage along its path, as they tuned the magnetic field up and down.

“It turns out, to our great joy and excitement, that the material’s electrical resistance oscillates,” Chi says. “Immediately, that tells you that this has very high electron mobility.”

Specifically, the team estimates that the ternary tetradymite thin film exhibits an electron mobility of 10,000 cm2/V-s — the highest mobility of any ternary tetradymite film yet measured. The team suspects that the film’s record mobility has something to do with its low defects and impurities, which they were able to minimize with their precise growth strategies. The fewer a material’s defects, the fewer obstacles an electron encounters, and the more freely it can flow.

“This is showing it’s possible to go a giant step further, when properly controlling these complex systems,” Moodera says. “This tells us we’re in the right direction, and we have the right system to proceed further, to keep perfecting this material down to even much thinner films and proximity coupling for use in future spintronics and wearable thermoelectric devices.”

This research was supported in part by the Army Research Office, National Science Foundation, Office of Naval Research, Canada Research Chairs Program and Natural Sciences and Engineering Research Council of Canada.

© Credit: Courtesy of the researchers; edited by MIT News

Researchers have grown thin films of ternary tetradymite (shown) that exhibit record high electron mobility.

A new way to spot life-threatening infections in cancer patients

Chemotherapy and other treatments that take down cancer cells can also destroy patients’ immune cells. Every year, that leads tens of thousands of cancer patients with weakened immune systems to contract infections that can turn deadly if unmanaged.

Doctors must strike a balance between giving enough chemotherapy to eradicate cancer while not giving so much that the patient’s white blood cell count gets dangerously low, a condition known as neutropenia. It can also leave patients socially isolated in between rounds of chemotherapy. Currently, the only way for doctors to monitor their patients’ white blood cells is through blood tests.

Now Leuko is developing an at-home white blood cell monitor to give doctors a more complete view of their patients’ health remotely. Rather than drawing blood, the device uses light to look through the skin at the top of the fingernail, and artificial intelligence to analyze and detect when white blood cells reach dangerously low levels.

The technology was first conceived of by researchers at MIT in 2015. Over the next few years, they developed a prototype and conducted a small study to validate their approach. Today, Leuko’s devices have accurately detected low white blood cell counts in hundreds of cancer patients, all without drawing a single drop of blood.

“We expect this to bring a clear improvement in the way that patients are monitored and cared for in the outpatient setting,” says Leuko co-founder and CTO Ian Butterworth, a former research engineer in MIT’s Research Laboratory of Electronics. “I also think there’s a more personal side of this for patients. These people can feel vulnerable around other people, and they don't currently have much they can do. That means that if they want to see their grandkids or see family, they’re constantly wondering, ‘Am I at high risk?’”

The company has been working with the Food and Drug Administration (FDA) over the last four years to design studies confirming their device is accurate and easy to use by untrained patients. Later this year, they expect to begin a pivotal study that will be used to register for FDA approval.

Once the device becomes an established tool for patient monitoring, Leuko’s team believes it could also give doctors a new way to optimize cancer treatment.

“Some of the physicians that we have talked to are very excited because they think future versions of our product could be used to personalize the dose of chemotherapy given to each patient,” says Leuko co-founder and CEO Carlos Castro-Gonzalez, a former postdoc at MIT. “If a patient is not becoming neutropenic, that could be a sign that you could increase the dose. Then every treatment could be based on how each patient is individually reacting.”

Monitoring immune health

Leuko co-founders Ian Butterworth, Carlos Castro-Gonzalez, Aurélien Bourquard, and Alvaro Sanchez-Ferro came to MIT in 2013 as part of the Madrid-MIT M+Vision Consortium, which was a collaboration between MIT and Madrid and is now part of MIT linQ. The program brought biomedical researchers from around the world to MIT to work on translational projects with institutions around Boston and Madrid.

The program, which was originally run out of MIT’s Research Laboratory of Electronics, challenged members to tackle huge unmet needs in medicine and connected them with MIT faculty members from across the Institute to build solutions. Leuko’s founders also received support from MIT’s entrepreneurial ecosystem, including the Venture Mentoring Service, the Sandbox Innovation Fund, the Martin Trust Center for Entrepreneurship, and the Deshpande Center. After its MIT spinout, the company raised seed and series A financing rounds led by Good Growth Capital and HTH VC.

“I didn’t even realize that entrepreneurship was a career option for a PhD [like myself],” Castro-Gonzalez says. “I was thinking that after the fellowship I would apply for faculty positions. That was the career path I had in mind, so I was very excited about the focus at MIT on trying to translate science into products that people can benefit from.”

Leuko’s founders knew people with cancer stood to benefit the most from a noninvasive white blood cell monitor. Unless patients go to the hospital, they can currently monitor only their temperature from home. If they show signs of a fever, they’re advised to go to the emergency room immediately.

“These infections happen quite frequently,” Sanchez-Ferro says. “One in every six cancer patients undergoing chemotherapy will develop an infection where their white blood cells are critically low. Some of those infections unfortunately end in deaths for patients, which is particularly terrible because they’re due to the treatment rather than the disease. [Infections] also mean the chemotherapy gets interrupted, which increases negative clinical outcomes for patients.”

Leuko’s optical device works through imaging the capillaries, or small blood vessels, just above the fingernail, which are more visible and already used by doctors to assess other aspects of vascular health. The company’s portable device analyzes white blood cell activity to detect critically low levels for care teams.

In a study of 44 patients in 2019, Leuko’s team showed the approach was able to detect when white blood cell levels dropped below a critical threshold, with minimal false positives. The team has since developed a product that another, larger study showed unsupervised patients can use at home to get immune information to doctors.

“We work completely noninvasively, so you can perform white blood cell measurements at home and much more frequently than what’s possible today,” Bourquard says. “The key aspect of this is it allows doctors to identify patients whose immune systems become so weak they’re at high risk of infection. If doctors have that information, they can provide preventative treatment in the form of antibiotics and growth factors. Research estimates that would eliminate 50 percent of hospitalizations.”

Expanding applications

Leuko’s founders believe their device will help physicians make more informed care decisions for patients. They also believe the device holds promise for monitoring patient health across other conditions.

“The long-term vision for the company is making this available to other patient populations that can also benefit from increased monitoring of their immune system,” Castro-Gonzalez says. “That includes patients with multiple sclerosis, autoimmune diseases, organ transplants, and patients that are rushed into the emergency room.”

Leuko’s team even sees a future where their device could be used to monitor other biomarkers in the blood.

“We believe this could be a platform technology,” Castro-Gonzalez says. “We get these noninvasive videos of the blood flowing through the capillaries, so part of the vision for the company is measuring other parameters in the blood beyond white blood cells, including hemoglobin, red blood cells, and platelets. That’s all part of our roadmap for the future.”

© Credit: iStock

Leuko is developing an at-home white blood cell monitor to give doctors a more comprehensive view of their chemotherapy patients’ health.
  • ✇MIT News - Nanoscience and nanotechnology | MIT.nano
  • Pushing material boundaries for better electronicsJennifer Chu | MIT News
    Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim. A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics. His research aims to push electronics past the in
     

Pushing material boundaries for better electronics

Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim.

A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics.

His research aims to push electronics past the inherent limits of silicon — a material that has reliably powered transistors and most other electronic elements but is reaching a performance limit as more computing power is packed into ever smaller devices.

Today, Kim and his students at MIT are exploring materials, devices, and systems that could take over where silicon leaves off. Kim is applying his insights to design next-generation devices, including low-power, high-performance transistors and memory devices, artificial intelligence chips, ultra-high-definition micro-LED displays, and flexible electronic “skin.” Ultimately, he envisions such beyond-silicon devices could be built into supercomputers small enough to fit in your pocket.

The innovations that have come out of his research are recorded in more than 200 issued U.S. patents and 70 research papers — an extensive list that he and his students continue to grow.

Kim credits many of his breakthroughs to the fundamentals he learned in his university days. In fact, he has carried his college textbooks and notes with him with every move. Today, he keeps the undergraduate notes — written in a light and meticulous graphite and ink — on a shelf nearest to his MIT desk, close at hand. He references them in his own class lectures and presentations, and when brainstorming research solutions.

“These textbooks are all in my brain now,” Kim says. “I’ve learned that if you completely understand the fundamentals, you can solve any problem.”

Fundamental shift

Kim wasn’t always a model student. Growing up in Seoul, South Korea, he was fixed on a musical career. He had a passion for singing and was bored by most other high school subjects.

“It was very monotonic,” Kim recalls. “My motivation for high school subjects was very low.”

After graduating high school, he enrolled in a materials science program at Hongik University, where he was lucky to met professors who had graduated from MIT and who later motivated him to study in the United States. But, Kim spent his first year there trying to make it as a musician. He wrote and sang songs that he recorded and sent to promoters, and went to multiple auditions. But after a year, he was faced with no call-backs, and a hard question.

“What should I do? It was a crisis to me,” Kim says.

In his second year, he decided to give materials science a go. When he sat in on his first class, he was surprised to find that the subject — the structure and behavior of materials at the atomic scale — made him want to learn more.

“My first year, my GPA was almost zero because I didn’t attend class, and was going to be kicked out,” Kim says. “Then from my second year on, I really loved every single subject in materials science. People who saw me in the library were surprised: ‘What are you doing here, without a guitar?’ I must have read these textbooks more than 10 times, and felt I really understood everything fundamental.”

Back to basics

He took this newfound passion to Seoul National University, where he enrolled in the materials science master’s program and learned to apply the ideas he absorbed to hands-on research problems. Metallurgy was a dominant field at the time, and Kim was assigned to experiment with high-temperature alloys — mixing and melting metallic powders to create materials that could be used in high-performance engines.

After completing his master’s, Kim wanted to continue with a PhD, overseas. But to do so, he first had to serve in the military. He spent the next two and a half years in the Korean air force, helping to maintain and refuel aircraft, and inventory their parts. All the while, he prepared applications to graduate schools abroad.

In 2003, after completing his service, he headed overseas, where he was accepted to the materials science graduate program at the University of California at Los Angeles with a fellowship.

“When I came out of the airplane and went to the dorm for the first day, people were drinking Corona on the balcony, playing music, and there was beautiful weather, and I thought, this is where I’m supposed to be!” Kim recalls.

For his PhD, he began to dive into the microscopic world of electronic materials, seeking ways to manipulate them to make faster electronics. The subject was a focus for his advisor, who previously worked at Bell Labs, where many computing innovations originated at the time.

“A lot of the papers I was reading were from Bell Labs, and IBM T.J. Watson, and I was so impressed, and thought: I really want to be a scientist there. That was my dream,” Kim says.

During his PhD program, he reached out to a scientist at IBM whose name kept coming up in the papers Kim was reading. In his initial letter, Kim wrote with a question about his own PhD work, which tackled a hard industry problem: how to stretch, or “strain,” silicon to minimize defects that would occur as more transistors are packed on a chip. 

The query opened a dialogue, and Kim eventually inquired and was accepted to an internship at the IBM T.J. Watson Research Center, just outside New York City. Soon after he arrived, his manager pitched him a challenge: He might be hired full-time if he could solve a new, harder problem, having to do with replacing silicon.

At the time, the electronics industry was looking to germanium as a possible successor to silicon. The material can conduct electrons at even smaller scales, which would enable germanium to be made into even tinier transistors, for faster, smaller, and more powerful devices. But there was no reliable way for germanium to be “doped” — an essential process that replaces some of a material’s atoms with another type of atom in a way that controls how electrons flow through the material.

“My manager told me he didn’t expect me to solve this. But I really wanted the job,” Kim says. “So day and night, I thought, how to solve this? And I always went back to the textbooks.”

Those textbooks reminded him of a fundamental rule: Replacing one atom with another would work well if both atoms were of similar size. This revelation triggered an idea. Perhaps germanium could be doped with a combination of two different atoms with an average atomic size that is similar to germanium’s.

“I came up with this idea, and right after, IBM showed that it worked. I was so amazed,” Kim says. “From that point, research became my passion. I did it because it was just so fun. Singing is not so different from performing research.”

As promised, he was hired as a postdoc and soon after, promoted to research staff member — a title he carried, literally, with pride.

“I was feeling so happy to be there,” Kim says. “I even wore my IBM badge to restaurants, and everywhere I went.”

Throughout his time at IBM, he learned to focus on research that directly impacts everyday human life, and how to apply the fundamentals to develop next-generation products.

“IBM really raised me up as an engineer who can identify the problems in an industry and find creative solutions to tackle the challenges,” he says.

Cycle of life

And yet, Kim felt he could do more. He was working on boundary-pushing research at one of the leading innovation hubs in the country, where “out-of-the-box” thinking was encouraged, and experimentally tested. But he wanted to explore beyond the company’s research portfolio, and also, find a way to pursue research not just as a profession but as a passion.

“My experience taught me that you can lead a very happy life as an engineer or scientist if your research becomes your hobby,” Kim says. “I wanted to teach this cycle — of happiness, research, and passion — to young people and help PhD students develop like artists or singers.”

In 2015, he packed his bags for MIT, where he accepted a junior faculty position in the Department of Mechanical Engineering. His first impressions upon arriving at the Institute?

“Freedom,” Kim says. “For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things.”

Since he’s put down roots on campus, he has built up a highly productive research group, focused on fabricating ultra-thin, stackable, high-performance electronic materials and devices, which Kim envisions could be used to build hybrid electronic systems as small as a fingernail and as powerful as a supercomputer. He credits the group’s many innovations to the more than 40 students, postdocs, and research scientists who have contributed to his lab.

“I hope this is where they can learn that research can be an art,” Kim says. “To students especially, I hope they see that, if they enjoy what they do, then they can be whatever they want to be.”

© Photo: Jake Belcher

“For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things,” says Jeehwan Kim.

Scientists observe record-setting electron mobility in a new crystal film

A material with a high electron mobility is like a highway without traffic. Any electrons that flow into the material experience a commuter’s dream, breezing through without any obstacles or congestion to slow or scatter them off their path.

The higher a material’s electron mobility, the more efficient its electrical conductivity, and the less energy is lost or wasted as electrons zip through. Advanced materials that exhibit high electron mobility will be essential for more efficient and sustainable electronic devices that can do more work with less power.

Now, physicists at MIT, the Army Research Lab, and elsewhere have achieved a record-setting level of electron mobility in a thin film of ternary tetradymite — a class of mineral that is naturally found in deep hydrothermal deposits of gold and quartz.

For this study, the scientists grew pure, ultrathin films of the material, in a way that minimized defects in its crystalline structure. They found that this nearly perfect film — much thinner than a human hair — exhibits the highest electron mobility in its class.

The team was able to estimate the material’s electron mobility by detecting quantum oscillations when electric current passes through. These oscillations are a signature of the quantum mechanical behavior of electrons in a material. The researchers detected a particular rhythm of oscillations that is characteristic of high electron mobility — higher than any ternary thin films of this class to date.

“Before, what people had achieved in terms of electron mobility in these systems was like traffic on a road under construction — you’re backed up, you can’t drive, it’s dusty, and it’s a mess,” says Jagadeesh Moodera, a senior research scientist in MIT’s Department of Physics. “In this newly optimized material, it’s like driving on the Mass Pike with no traffic.”

The team’s results, which appear today in the journal Materials Today Physics, point to ternary tetradymite thin films as a promising material for future electronics, such as wearable thermoelectric devices that efficiently convert waste heat into electricity. (Tetradymites are the active materials that cause the cooling effect in commercial thermoelectric coolers.) The material could also be the basis for spintronic devices, which process information using an electron’s spin, using far less power than conventional silicon-based devices.

The study also uses quantum oscillations as a highly effective tool for measuring a material’s electronic performance.

“We are using this oscillation as a rapid test kit,” says study author Hang Chi, a former research scientist at MIT who is now at the University of Ottawa. “By studying this delicate quantum dance of electrons, scientists can start to understand and identify new materials for the next generation of technologies that will power our world.”

Chi and Moodera’s co-authors include Patrick Taylor, formerly of MIT Lincoln Laboratory, along with Owen Vail and Harry Hier of the Army Research Lab, and Brandi Wooten and Joseph Heremans of Ohio State University.

Beam down

The name “tetradymite” derives from the Greek “tetra” for “four,” and “dymite,” meaning “twin.” Both terms describe the mineral’s crystal structure, which consists of rhombohedral crystals that are “twinned” in groups of four — i.e. they have identical crystal structures that share a side.

Tetradymites comprise combinations of bismuth, antimony tellurium, sulfur, and selenium. In the 1950s, scientists found that tetradymites exhibit semiconducting properties that could be ideal for thermoelectric applications: The mineral in its bulk crystal form was able to passively convert heat into electricity.

Then, in the 1990s, the late Institute Professor Mildred Dresselhaus proposed that the mineral’s thermoelectric properties might be significantly enhanced, not in its bulk form but within its microscopic, nanometer-scale surface, where the interactions of electrons is more pronounced. (Heremans happened to work in Dresselhaus’ group at the time.)

“It became clear that when you look at this material long enough and close enough, new things will happen,” Chi says. “This material was identified as a topological insulator, where scientists could see very interesting phenomena on their surface. But to keep uncovering new things, we have to master the material growth.”

To grow thin films of pure crystal, the researchers employed molecular beam epitaxy — a method by which a beam of molecules is fired at a substrate, typically in a vacuum, and with precisely controlled temperatures. When the molecules deposit on the substrate, they condense and build up slowly, one atomic layer at a time. By controlling the timing and type of molecules deposited, scientists can grow ultrathin crystal films in exact configurations, with few if any defects.

“Normally, bismuth and tellurium can interchange their position, which creates defects in the crystal,” co-author Taylor explains. “The system we used to grow these films came down with me from MIT Lincoln Laboratory, where we use high purity materials to minimize impurities to undetectable limits. It is the perfect tool to explore this research.”

Free flow

The team grew thin films of ternary tetradymite, each about 100 nanometers thin. They then tested the film’s electronic properties by looking for Shubnikov-de Haas quantum oscillations — a phenomenon that was discovered by physicists Lev Shubnikov and Wander de Haas, who found that a material’s electrical conductivity can oscillate when exposed to a strong magnetic field at low temperatures. This effect occurs because the material’s electrons fill up specific energy levels that shift as the magnetic field changes.

Such quantum oscillations could serve as a signature of a material’s electronic structure, and the ways in which electrons behave and interact. Most notably for the MIT team, the oscillations could determine a material’s electron mobility: If oscillations exist, it must mean that the material’s electrical resistance is able to change, and by inference, electrons can be mobile, and made to easily flow.

The team looked for signs of quantum oscillations in their new films, by first exposing them to ultracold temperatures and a strong magnetic field, then running an electric current through the film and measuring the voltage along its path, as they tuned the magnetic field up and down.

“It turns out, to our great joy and excitement, that the material’s electrical resistance oscillates,” Chi says. “Immediately, that tells you that this has very high electron mobility.”

Specifically, the team estimates that the ternary tetradymite thin film exhibits an electron mobility of 10,000 cm2/V-s — the highest mobility of any ternary tetradymite film yet measured. The team suspects that the film’s record mobility has something to do with its low defects and impurities, which they were able to minimize with their precise growth strategies. The fewer a material’s defects, the fewer obstacles an electron encounters, and the more freely it can flow.

“This is showing it’s possible to go a giant step further, when properly controlling these complex systems,” Moodera says. “This tells us we’re in the right direction, and we have the right system to proceed further, to keep perfecting this material down to even much thinner films and proximity coupling for use in future spintronics and wearable thermoelectric devices.”

This research was supported in part by the Army Research Office, National Science Foundation, Office of Naval Research, Canada Research Chairs Program and Natural Sciences and Engineering Research Council of Canada.

© Credit: Courtesy of the researchers; edited by MIT News

Researchers have grown thin films of ternary tetradymite (shown) that exhibit record high electron mobility.

A new way to spot life-threatening infections in cancer patients

Chemotherapy and other treatments that take down cancer cells can also destroy patients’ immune cells. Every year, that leads tens of thousands of cancer patients with weakened immune systems to contract infections that can turn deadly if unmanaged.

Doctors must strike a balance between giving enough chemotherapy to eradicate cancer while not giving so much that the patient’s white blood cell count gets dangerously low, a condition known as neutropenia. It can also leave patients socially isolated in between rounds of chemotherapy. Currently, the only way for doctors to monitor their patients’ white blood cells is through blood tests.

Now Leuko is developing an at-home white blood cell monitor to give doctors a more complete view of their patients’ health remotely. Rather than drawing blood, the device uses light to look through the skin at the top of the fingernail, and artificial intelligence to analyze and detect when white blood cells reach dangerously low levels.

The technology was first conceived of by researchers at MIT in 2015. Over the next few years, they developed a prototype and conducted a small study to validate their approach. Today, Leuko’s devices have accurately detected low white blood cell counts in hundreds of cancer patients, all without drawing a single drop of blood.

“We expect this to bring a clear improvement in the way that patients are monitored and cared for in the outpatient setting,” says Leuko co-founder and CTO Ian Butterworth, a former research engineer in MIT’s Research Laboratory of Electronics. “I also think there’s a more personal side of this for patients. These people can feel vulnerable around other people, and they don't currently have much they can do. That means that if they want to see their grandkids or see family, they’re constantly wondering, ‘Am I at high risk?’”

The company has been working with the Food and Drug Administration (FDA) over the last four years to design studies confirming their device is accurate and easy to use by untrained patients. Later this year, they expect to begin a pivotal study that will be used to register for FDA approval.

Once the device becomes an established tool for patient monitoring, Leuko’s team believes it could also give doctors a new way to optimize cancer treatment.

“Some of the physicians that we have talked to are very excited because they think future versions of our product could be used to personalize the dose of chemotherapy given to each patient,” says Leuko co-founder and CEO Carlos Castro-Gonzalez, a former postdoc at MIT. “If a patient is not becoming neutropenic, that could be a sign that you could increase the dose. Then every treatment could be based on how each patient is individually reacting.”

Monitoring immune health

Leuko co-founders Ian Butterworth, Carlos Castro-Gonzalez, Aurélien Bourquard, and Alvaro Sanchez-Ferro came to MIT in 2013 as part of the Madrid-MIT M+Vision Consortium, which was a collaboration between MIT and Madrid and is now part of MIT linQ. The program brought biomedical researchers from around the world to MIT to work on translational projects with institutions around Boston and Madrid.

The program, which was originally run out of MIT’s Research Laboratory of Electronics, challenged members to tackle huge unmet needs in medicine and connected them with MIT faculty members from across the Institute to build solutions. Leuko’s founders also received support from MIT’s entrepreneurial ecosystem, including the Venture Mentoring Service, the Sandbox Innovation Fund, the Martin Trust Center for Entrepreneurship, and the Deshpande Center. After its MIT spinout, the company raised seed and series A financing rounds led by Good Growth Capital and HTH VC.

“I didn’t even realize that entrepreneurship was a career option for a PhD [like myself],” Castro-Gonzalez says. “I was thinking that after the fellowship I would apply for faculty positions. That was the career path I had in mind, so I was very excited about the focus at MIT on trying to translate science into products that people can benefit from.”

Leuko’s founders knew people with cancer stood to benefit the most from a noninvasive white blood cell monitor. Unless patients go to the hospital, they can currently monitor only their temperature from home. If they show signs of a fever, they’re advised to go to the emergency room immediately.

“These infections happen quite frequently,” Sanchez-Ferro says. “One in every six cancer patients undergoing chemotherapy will develop an infection where their white blood cells are critically low. Some of those infections unfortunately end in deaths for patients, which is particularly terrible because they’re due to the treatment rather than the disease. [Infections] also mean the chemotherapy gets interrupted, which increases negative clinical outcomes for patients.”

Leuko’s optical device works through imaging the capillaries, or small blood vessels, just above the fingernail, which are more visible and already used by doctors to assess other aspects of vascular health. The company’s portable device analyzes white blood cell activity to detect critically low levels for care teams.

In a study of 44 patients in 2019, Leuko’s team showed the approach was able to detect when white blood cell levels dropped below a critical threshold, with minimal false positives. The team has since developed a product that another, larger study showed unsupervised patients can use at home to get immune information to doctors.

“We work completely noninvasively, so you can perform white blood cell measurements at home and much more frequently than what’s possible today,” Bourquard says. “The key aspect of this is it allows doctors to identify patients whose immune systems become so weak they’re at high risk of infection. If doctors have that information, they can provide preventative treatment in the form of antibiotics and growth factors. Research estimates that would eliminate 50 percent of hospitalizations.”

Expanding applications

Leuko’s founders believe their device will help physicians make more informed care decisions for patients. They also believe the device holds promise for monitoring patient health across other conditions.

“The long-term vision for the company is making this available to other patient populations that can also benefit from increased monitoring of their immune system,” Castro-Gonzalez says. “That includes patients with multiple sclerosis, autoimmune diseases, organ transplants, and patients that are rushed into the emergency room.”

Leuko’s team even sees a future where their device could be used to monitor other biomarkers in the blood.

“We believe this could be a platform technology,” Castro-Gonzalez says. “We get these noninvasive videos of the blood flowing through the capillaries, so part of the vision for the company is measuring other parameters in the blood beyond white blood cells, including hemoglobin, red blood cells, and platelets. That’s all part of our roadmap for the future.”

© Credit: iStock

Leuko is developing an at-home white blood cell monitor to give doctors a more comprehensive view of their chemotherapy patients’ health.
  • ✇MIT News - Nanoscience and nanotechnology | MIT.nano
  • Pushing material boundaries for better electronicsJennifer Chu | MIT News
    Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim. A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics. His research aims to push electronics past the in
     

Pushing material boundaries for better electronics

Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim.

A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics.

His research aims to push electronics past the inherent limits of silicon — a material that has reliably powered transistors and most other electronic elements but is reaching a performance limit as more computing power is packed into ever smaller devices.

Today, Kim and his students at MIT are exploring materials, devices, and systems that could take over where silicon leaves off. Kim is applying his insights to design next-generation devices, including low-power, high-performance transistors and memory devices, artificial intelligence chips, ultra-high-definition micro-LED displays, and flexible electronic “skin.” Ultimately, he envisions such beyond-silicon devices could be built into supercomputers small enough to fit in your pocket.

The innovations that have come out of his research are recorded in more than 200 issued U.S. patents and 70 research papers — an extensive list that he and his students continue to grow.

Kim credits many of his breakthroughs to the fundamentals he learned in his university days. In fact, he has carried his college textbooks and notes with him with every move. Today, he keeps the undergraduate notes — written in a light and meticulous graphite and ink — on a shelf nearest to his MIT desk, close at hand. He references them in his own class lectures and presentations, and when brainstorming research solutions.

“These textbooks are all in my brain now,” Kim says. “I’ve learned that if you completely understand the fundamentals, you can solve any problem.”

Fundamental shift

Kim wasn’t always a model student. Growing up in Seoul, South Korea, he was fixed on a musical career. He had a passion for singing and was bored by most other high school subjects.

“It was very monotonic,” Kim recalls. “My motivation for high school subjects was very low.”

After graduating high school, he enrolled in a materials science program at Hongik University, where he was lucky to met professors who had graduated from MIT and who later motivated him to study in the United States. But, Kim spent his first year there trying to make it as a musician. He wrote and sang songs that he recorded and sent to promoters, and went to multiple auditions. But after a year, he was faced with no call-backs, and a hard question.

“What should I do? It was a crisis to me,” Kim says.

In his second year, he decided to give materials science a go. When he sat in on his first class, he was surprised to find that the subject — the structure and behavior of materials at the atomic scale — made him want to learn more.

“My first year, my GPA was almost zero because I didn’t attend class, and was going to be kicked out,” Kim says. “Then from my second year on, I really loved every single subject in materials science. People who saw me in the library were surprised: ‘What are you doing here, without a guitar?’ I must have read these textbooks more than 10 times, and felt I really understood everything fundamental.”

Back to basics

He took this newfound passion to Seoul National University, where he enrolled in the materials science master’s program and learned to apply the ideas he absorbed to hands-on research problems. Metallurgy was a dominant field at the time, and Kim was assigned to experiment with high-temperature alloys — mixing and melting metallic powders to create materials that could be used in high-performance engines.

After completing his master’s, Kim wanted to continue with a PhD, overseas. But to do so, he first had to serve in the military. He spent the next two and a half years in the Korean air force, helping to maintain and refuel aircraft, and inventory their parts. All the while, he prepared applications to graduate schools abroad.

In 2003, after completing his service, he headed overseas, where he was accepted to the materials science graduate program at the University of California at Los Angeles with a fellowship.

“When I came out of the airplane and went to the dorm for the first day, people were drinking Corona on the balcony, playing music, and there was beautiful weather, and I thought, this is where I’m supposed to be!” Kim recalls.

For his PhD, he began to dive into the microscopic world of electronic materials, seeking ways to manipulate them to make faster electronics. The subject was a focus for his advisor, who previously worked at Bell Labs, where many computing innovations originated at the time.

“A lot of the papers I was reading were from Bell Labs, and IBM T.J. Watson, and I was so impressed, and thought: I really want to be a scientist there. That was my dream,” Kim says.

During his PhD program, he reached out to a scientist at IBM whose name kept coming up in the papers Kim was reading. In his initial letter, Kim wrote with a question about his own PhD work, which tackled a hard industry problem: how to stretch, or “strain,” silicon to minimize defects that would occur as more transistors are packed on a chip. 

The query opened a dialogue, and Kim eventually inquired and was accepted to an internship at the IBM T.J. Watson Research Center, just outside New York City. Soon after he arrived, his manager pitched him a challenge: He might be hired full-time if he could solve a new, harder problem, having to do with replacing silicon.

At the time, the electronics industry was looking to germanium as a possible successor to silicon. The material can conduct electrons at even smaller scales, which would enable germanium to be made into even tinier transistors, for faster, smaller, and more powerful devices. But there was no reliable way for germanium to be “doped” — an essential process that replaces some of a material’s atoms with another type of atom in a way that controls how electrons flow through the material.

“My manager told me he didn’t expect me to solve this. But I really wanted the job,” Kim says. “So day and night, I thought, how to solve this? And I always went back to the textbooks.”

Those textbooks reminded him of a fundamental rule: Replacing one atom with another would work well if both atoms were of similar size. This revelation triggered an idea. Perhaps germanium could be doped with a combination of two different atoms with an average atomic size that is similar to germanium’s.

“I came up with this idea, and right after, IBM showed that it worked. I was so amazed,” Kim says. “From that point, research became my passion. I did it because it was just so fun. Singing is not so different from performing research.”

As promised, he was hired as a postdoc and soon after, promoted to research staff member — a title he carried, literally, with pride.

“I was feeling so happy to be there,” Kim says. “I even wore my IBM badge to restaurants, and everywhere I went.”

Throughout his time at IBM, he learned to focus on research that directly impacts everyday human life, and how to apply the fundamentals to develop next-generation products.

“IBM really raised me up as an engineer who can identify the problems in an industry and find creative solutions to tackle the challenges,” he says.

Cycle of life

And yet, Kim felt he could do more. He was working on boundary-pushing research at one of the leading innovation hubs in the country, where “out-of-the-box” thinking was encouraged, and experimentally tested. But he wanted to explore beyond the company’s research portfolio, and also, find a way to pursue research not just as a profession but as a passion.

“My experience taught me that you can lead a very happy life as an engineer or scientist if your research becomes your hobby,” Kim says. “I wanted to teach this cycle — of happiness, research, and passion — to young people and help PhD students develop like artists or singers.”

In 2015, he packed his bags for MIT, where he accepted a junior faculty position in the Department of Mechanical Engineering. His first impressions upon arriving at the Institute?

“Freedom,” Kim says. “For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things.”

Since he’s put down roots on campus, he has built up a highly productive research group, focused on fabricating ultra-thin, stackable, high-performance electronic materials and devices, which Kim envisions could be used to build hybrid electronic systems as small as a fingernail and as powerful as a supercomputer. He credits the group’s many innovations to the more than 40 students, postdocs, and research scientists who have contributed to his lab.

“I hope this is where they can learn that research can be an art,” Kim says. “To students especially, I hope they see that, if they enjoy what they do, then they can be whatever they want to be.”

© Photo: Jake Belcher

“For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things,” says Jeehwan Kim.

A new way to spot life-threatening infections in cancer patients

Chemotherapy and other treatments that take down cancer cells can also destroy patients’ immune cells. Every year, that leads tens of thousands of cancer patients with weakened immune systems to contract infections that can turn deadly if unmanaged.

Doctors must strike a balance between giving enough chemotherapy to eradicate cancer while not giving so much that the patient’s white blood cell count gets dangerously low, a condition known as neutropenia. It can also leave patients socially isolated in between rounds of chemotherapy. Currently, the only way for doctors to monitor their patients’ white blood cells is through blood tests.

Now Leuko is developing an at-home white blood cell monitor to give doctors a more complete view of their patients’ health remotely. Rather than drawing blood, the device uses light to look through the skin at the top of the fingernail, and artificial intelligence to analyze and detect when white blood cells reach dangerously low levels.

The technology was first conceived of by researchers at MIT in 2015. Over the next few years, they developed a prototype and conducted a small study to validate their approach. Today, Leuko’s devices have accurately detected low white blood cell counts in hundreds of cancer patients, all without drawing a single drop of blood.

“We expect this to bring a clear improvement in the way that patients are monitored and cared for in the outpatient setting,” says Leuko co-founder and CTO Ian Butterworth, a former research engineer in MIT’s Research Laboratory of Electronics. “I also think there’s a more personal side of this for patients. These people can feel vulnerable around other people, and they don't currently have much they can do. That means that if they want to see their grandkids or see family, they’re constantly wondering, ‘Am I at high risk?’”

The company has been working with the Food and Drug Administration (FDA) over the last four years to design studies confirming their device is accurate and easy to use by untrained patients. Later this year, they expect to begin a pivotal study that will be used to register for FDA approval.

Once the device becomes an established tool for patient monitoring, Leuko’s team believes it could also give doctors a new way to optimize cancer treatment.

“Some of the physicians that we have talked to are very excited because they think future versions of our product could be used to personalize the dose of chemotherapy given to each patient,” says Leuko co-founder and CEO Carlos Castro-Gonzalez, a former postdoc at MIT. “If a patient is not becoming neutropenic, that could be a sign that you could increase the dose. Then every treatment could be based on how each patient is individually reacting.”

Monitoring immune health

Leuko co-founders Ian Butterworth, Carlos Castro-Gonzalez, Aurélien Bourquard, and Alvaro Sanchez-Ferro came to MIT in 2013 as part of the Madrid-MIT M+Vision Consortium, which was a collaboration between MIT and Madrid and is now part of MIT linQ. The program brought biomedical researchers from around the world to MIT to work on translational projects with institutions around Boston and Madrid.

The program, which was originally run out of MIT’s Research Laboratory of Electronics, challenged members to tackle huge unmet needs in medicine and connected them with MIT faculty members from across the Institute to build solutions. Leuko’s founders also received support from MIT’s entrepreneurial ecosystem, including the Venture Mentoring Service, the Sandbox Innovation Fund, the Martin Trust Center for Entrepreneurship, and the Deshpande Center. After its MIT spinout, the company raised seed and series A financing rounds led by Good Growth Capital and HTH VC.

“I didn’t even realize that entrepreneurship was a career option for a PhD [like myself],” Castro-Gonzalez says. “I was thinking that after the fellowship I would apply for faculty positions. That was the career path I had in mind, so I was very excited about the focus at MIT on trying to translate science into products that people can benefit from.”

Leuko’s founders knew people with cancer stood to benefit the most from a noninvasive white blood cell monitor. Unless patients go to the hospital, they can currently monitor only their temperature from home. If they show signs of a fever, they’re advised to go to the emergency room immediately.

“These infections happen quite frequently,” Sanchez-Ferro says. “One in every six cancer patients undergoing chemotherapy will develop an infection where their white blood cells are critically low. Some of those infections unfortunately end in deaths for patients, which is particularly terrible because they’re due to the treatment rather than the disease. [Infections] also mean the chemotherapy gets interrupted, which increases negative clinical outcomes for patients.”

Leuko’s optical device works through imaging the capillaries, or small blood vessels, just above the fingernail, which are more visible and already used by doctors to assess other aspects of vascular health. The company’s portable device analyzes white blood cell activity to detect critically low levels for care teams.

In a study of 44 patients in 2019, Leuko’s team showed the approach was able to detect when white blood cell levels dropped below a critical threshold, with minimal false positives. The team has since developed a product that another, larger study showed unsupervised patients can use at home to get immune information to doctors.

“We work completely noninvasively, so you can perform white blood cell measurements at home and much more frequently than what’s possible today,” Bourquard says. “The key aspect of this is it allows doctors to identify patients whose immune systems become so weak they’re at high risk of infection. If doctors have that information, they can provide preventative treatment in the form of antibiotics and growth factors. Research estimates that would eliminate 50 percent of hospitalizations.”

Expanding applications

Leuko’s founders believe their device will help physicians make more informed care decisions for patients. They also believe the device holds promise for monitoring patient health across other conditions.

“The long-term vision for the company is making this available to other patient populations that can also benefit from increased monitoring of their immune system,” Castro-Gonzalez says. “That includes patients with multiple sclerosis, autoimmune diseases, organ transplants, and patients that are rushed into the emergency room.”

Leuko’s team even sees a future where their device could be used to monitor other biomarkers in the blood.

“We believe this could be a platform technology,” Castro-Gonzalez says. “We get these noninvasive videos of the blood flowing through the capillaries, so part of the vision for the company is measuring other parameters in the blood beyond white blood cells, including hemoglobin, red blood cells, and platelets. That’s all part of our roadmap for the future.”

© Credit: iStock

Leuko is developing an at-home white blood cell monitor to give doctors a more comprehensive view of their chemotherapy patients’ health.
  • ✇MIT News - Nanoscience and nanotechnology | MIT.nano
  • Pushing material boundaries for better electronicsJennifer Chu | MIT News
    Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim. A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics. His research aims to push electronics past the in
     

Pushing material boundaries for better electronics

Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim.

A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics.

His research aims to push electronics past the inherent limits of silicon — a material that has reliably powered transistors and most other electronic elements but is reaching a performance limit as more computing power is packed into ever smaller devices.

Today, Kim and his students at MIT are exploring materials, devices, and systems that could take over where silicon leaves off. Kim is applying his insights to design next-generation devices, including low-power, high-performance transistors and memory devices, artificial intelligence chips, ultra-high-definition micro-LED displays, and flexible electronic “skin.” Ultimately, he envisions such beyond-silicon devices could be built into supercomputers small enough to fit in your pocket.

The innovations that have come out of his research are recorded in more than 200 issued U.S. patents and 70 research papers — an extensive list that he and his students continue to grow.

Kim credits many of his breakthroughs to the fundamentals he learned in his university days. In fact, he has carried his college textbooks and notes with him with every move. Today, he keeps the undergraduate notes — written in a light and meticulous graphite and ink — on a shelf nearest to his MIT desk, close at hand. He references them in his own class lectures and presentations, and when brainstorming research solutions.

“These textbooks are all in my brain now,” Kim says. “I’ve learned that if you completely understand the fundamentals, you can solve any problem.”

Fundamental shift

Kim wasn’t always a model student. Growing up in Seoul, South Korea, he was fixed on a musical career. He had a passion for singing and was bored by most other high school subjects.

“It was very monotonic,” Kim recalls. “My motivation for high school subjects was very low.”

After graduating high school, he enrolled in a materials science program at Hongik University, where he was lucky to met professors who had graduated from MIT and who later motivated him to study in the United States. But, Kim spent his first year there trying to make it as a musician. He wrote and sang songs that he recorded and sent to promoters, and went to multiple auditions. But after a year, he was faced with no call-backs, and a hard question.

“What should I do? It was a crisis to me,” Kim says.

In his second year, he decided to give materials science a go. When he sat in on his first class, he was surprised to find that the subject — the structure and behavior of materials at the atomic scale — made him want to learn more.

“My first year, my GPA was almost zero because I didn’t attend class, and was going to be kicked out,” Kim says. “Then from my second year on, I really loved every single subject in materials science. People who saw me in the library were surprised: ‘What are you doing here, without a guitar?’ I must have read these textbooks more than 10 times, and felt I really understood everything fundamental.”

Back to basics

He took this newfound passion to Seoul National University, where he enrolled in the materials science master’s program and learned to apply the ideas he absorbed to hands-on research problems. Metallurgy was a dominant field at the time, and Kim was assigned to experiment with high-temperature alloys — mixing and melting metallic powders to create materials that could be used in high-performance engines.

After completing his master’s, Kim wanted to continue with a PhD, overseas. But to do so, he first had to serve in the military. He spent the next two and a half years in the Korean air force, helping to maintain and refuel aircraft, and inventory their parts. All the while, he prepared applications to graduate schools abroad.

In 2003, after completing his service, he headed overseas, where he was accepted to the materials science graduate program at the University of California at Los Angeles with a fellowship.

“When I came out of the airplane and went to the dorm for the first day, people were drinking Corona on the balcony, playing music, and there was beautiful weather, and I thought, this is where I’m supposed to be!” Kim recalls.

For his PhD, he began to dive into the microscopic world of electronic materials, seeking ways to manipulate them to make faster electronics. The subject was a focus for his advisor, who previously worked at Bell Labs, where many computing innovations originated at the time.

“A lot of the papers I was reading were from Bell Labs, and IBM T.J. Watson, and I was so impressed, and thought: I really want to be a scientist there. That was my dream,” Kim says.

During his PhD program, he reached out to a scientist at IBM whose name kept coming up in the papers Kim was reading. In his initial letter, Kim wrote with a question about his own PhD work, which tackled a hard industry problem: how to stretch, or “strain,” silicon to minimize defects that would occur as more transistors are packed on a chip. 

The query opened a dialogue, and Kim eventually inquired and was accepted to an internship at the IBM T.J. Watson Research Center, just outside New York City. Soon after he arrived, his manager pitched him a challenge: He might be hired full-time if he could solve a new, harder problem, having to do with replacing silicon.

At the time, the electronics industry was looking to germanium as a possible successor to silicon. The material can conduct electrons at even smaller scales, which would enable germanium to be made into even tinier transistors, for faster, smaller, and more powerful devices. But there was no reliable way for germanium to be “doped” — an essential process that replaces some of a material’s atoms with another type of atom in a way that controls how electrons flow through the material.

“My manager told me he didn’t expect me to solve this. But I really wanted the job,” Kim says. “So day and night, I thought, how to solve this? And I always went back to the textbooks.”

Those textbooks reminded him of a fundamental rule: Replacing one atom with another would work well if both atoms were of similar size. This revelation triggered an idea. Perhaps germanium could be doped with a combination of two different atoms with an average atomic size that is similar to germanium’s.

“I came up with this idea, and right after, IBM showed that it worked. I was so amazed,” Kim says. “From that point, research became my passion. I did it because it was just so fun. Singing is not so different from performing research.”

As promised, he was hired as a postdoc and soon after, promoted to research staff member — a title he carried, literally, with pride.

“I was feeling so happy to be there,” Kim says. “I even wore my IBM badge to restaurants, and everywhere I went.”

Throughout his time at IBM, he learned to focus on research that directly impacts everyday human life, and how to apply the fundamentals to develop next-generation products.

“IBM really raised me up as an engineer who can identify the problems in an industry and find creative solutions to tackle the challenges,” he says.

Cycle of life

And yet, Kim felt he could do more. He was working on boundary-pushing research at one of the leading innovation hubs in the country, where “out-of-the-box” thinking was encouraged, and experimentally tested. But he wanted to explore beyond the company’s research portfolio, and also, find a way to pursue research not just as a profession but as a passion.

“My experience taught me that you can lead a very happy life as an engineer or scientist if your research becomes your hobby,” Kim says. “I wanted to teach this cycle — of happiness, research, and passion — to young people and help PhD students develop like artists or singers.”

In 2015, he packed his bags for MIT, where he accepted a junior faculty position in the Department of Mechanical Engineering. His first impressions upon arriving at the Institute?

“Freedom,” Kim says. “For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things.”

Since he’s put down roots on campus, he has built up a highly productive research group, focused on fabricating ultra-thin, stackable, high-performance electronic materials and devices, which Kim envisions could be used to build hybrid electronic systems as small as a fingernail and as powerful as a supercomputer. He credits the group’s many innovations to the more than 40 students, postdocs, and research scientists who have contributed to his lab.

“I hope this is where they can learn that research can be an art,” Kim says. “To students especially, I hope they see that, if they enjoy what they do, then they can be whatever they want to be.”

© Photo: Jake Belcher

“For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things,” says Jeehwan Kim.
  • ✇MIT News - Nanoscience and nanotechnology | MIT.nano
  • Pushing material boundaries for better electronicsJennifer Chu | MIT News
    Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim. A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics. His research aims to push electronics past the in
     

Pushing material boundaries for better electronics

Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim.

A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics.

His research aims to push electronics past the inherent limits of silicon — a material that has reliably powered transistors and most other electronic elements but is reaching a performance limit as more computing power is packed into ever smaller devices.

Today, Kim and his students at MIT are exploring materials, devices, and systems that could take over where silicon leaves off. Kim is applying his insights to design next-generation devices, including low-power, high-performance transistors and memory devices, artificial intelligence chips, ultra-high-definition micro-LED displays, and flexible electronic “skin.” Ultimately, he envisions such beyond-silicon devices could be built into supercomputers small enough to fit in your pocket.

The innovations that have come out of his research are recorded in more than 200 issued U.S. patents and 70 research papers — an extensive list that he and his students continue to grow.

Kim credits many of his breakthroughs to the fundamentals he learned in his university days. In fact, he has carried his college textbooks and notes with him with every move. Today, he keeps the undergraduate notes — written in a light and meticulous graphite and ink — on a shelf nearest to his MIT desk, close at hand. He references them in his own class lectures and presentations, and when brainstorming research solutions.

“These textbooks are all in my brain now,” Kim says. “I’ve learned that if you completely understand the fundamentals, you can solve any problem.”

Fundamental shift

Kim wasn’t always a model student. Growing up in Seoul, South Korea, he was fixed on a musical career. He had a passion for singing and was bored by most other high school subjects.

“It was very monotonic,” Kim recalls. “My motivation for high school subjects was very low.”

After graduating high school, he enrolled in a materials science program at Hongik University, where he was lucky to met professors who had graduated from MIT and who later motivated him to study in the United States. But, Kim spent his first year there trying to make it as a musician. He wrote and sang songs that he recorded and sent to promoters, and went to multiple auditions. But after a year, he was faced with no call-backs, and a hard question.

“What should I do? It was a crisis to me,” Kim says.

In his second year, he decided to give materials science a go. When he sat in on his first class, he was surprised to find that the subject — the structure and behavior of materials at the atomic scale — made him want to learn more.

“My first year, my GPA was almost zero because I didn’t attend class, and was going to be kicked out,” Kim says. “Then from my second year on, I really loved every single subject in materials science. People who saw me in the library were surprised: ‘What are you doing here, without a guitar?’ I must have read these textbooks more than 10 times, and felt I really understood everything fundamental.”

Back to basics

He took this newfound passion to Seoul National University, where he enrolled in the materials science master’s program and learned to apply the ideas he absorbed to hands-on research problems. Metallurgy was a dominant field at the time, and Kim was assigned to experiment with high-temperature alloys — mixing and melting metallic powders to create materials that could be used in high-performance engines.

After completing his master’s, Kim wanted to continue with a PhD, overseas. But to do so, he first had to serve in the military. He spent the next two and a half years in the Korean air force, helping to maintain and refuel aircraft, and inventory their parts. All the while, he prepared applications to graduate schools abroad.

In 2003, after completing his service, he headed overseas, where he was accepted to the materials science graduate program at the University of California at Los Angeles with a fellowship.

“When I came out of the airplane and went to the dorm for the first day, people were drinking Corona on the balcony, playing music, and there was beautiful weather, and I thought, this is where I’m supposed to be!” Kim recalls.

For his PhD, he began to dive into the microscopic world of electronic materials, seeking ways to manipulate them to make faster electronics. The subject was a focus for his advisor, who previously worked at Bell Labs, where many computing innovations originated at the time.

“A lot of the papers I was reading were from Bell Labs, and IBM T.J. Watson, and I was so impressed, and thought: I really want to be a scientist there. That was my dream,” Kim says.

During his PhD program, he reached out to a scientist at IBM whose name kept coming up in the papers Kim was reading. In his initial letter, Kim wrote with a question about his own PhD work, which tackled a hard industry problem: how to stretch, or “strain,” silicon to minimize defects that would occur as more transistors are packed on a chip. 

The query opened a dialogue, and Kim eventually inquired and was accepted to an internship at the IBM T.J. Watson Research Center, just outside New York City. Soon after he arrived, his manager pitched him a challenge: He might be hired full-time if he could solve a new, harder problem, having to do with replacing silicon.

At the time, the electronics industry was looking to germanium as a possible successor to silicon. The material can conduct electrons at even smaller scales, which would enable germanium to be made into even tinier transistors, for faster, smaller, and more powerful devices. But there was no reliable way for germanium to be “doped” — an essential process that replaces some of a material’s atoms with another type of atom in a way that controls how electrons flow through the material.

“My manager told me he didn’t expect me to solve this. But I really wanted the job,” Kim says. “So day and night, I thought, how to solve this? And I always went back to the textbooks.”

Those textbooks reminded him of a fundamental rule: Replacing one atom with another would work well if both atoms were of similar size. This revelation triggered an idea. Perhaps germanium could be doped with a combination of two different atoms with an average atomic size that is similar to germanium’s.

“I came up with this idea, and right after, IBM showed that it worked. I was so amazed,” Kim says. “From that point, research became my passion. I did it because it was just so fun. Singing is not so different from performing research.”

As promised, he was hired as a postdoc and soon after, promoted to research staff member — a title he carried, literally, with pride.

“I was feeling so happy to be there,” Kim says. “I even wore my IBM badge to restaurants, and everywhere I went.”

Throughout his time at IBM, he learned to focus on research that directly impacts everyday human life, and how to apply the fundamentals to develop next-generation products.

“IBM really raised me up as an engineer who can identify the problems in an industry and find creative solutions to tackle the challenges,” he says.

Cycle of life

And yet, Kim felt he could do more. He was working on boundary-pushing research at one of the leading innovation hubs in the country, where “out-of-the-box” thinking was encouraged, and experimentally tested. But he wanted to explore beyond the company’s research portfolio, and also, find a way to pursue research not just as a profession but as a passion.

“My experience taught me that you can lead a very happy life as an engineer or scientist if your research becomes your hobby,” Kim says. “I wanted to teach this cycle — of happiness, research, and passion — to young people and help PhD students develop like artists or singers.”

In 2015, he packed his bags for MIT, where he accepted a junior faculty position in the Department of Mechanical Engineering. His first impressions upon arriving at the Institute?

“Freedom,” Kim says. “For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things.”

Since he’s put down roots on campus, he has built up a highly productive research group, focused on fabricating ultra-thin, stackable, high-performance electronic materials and devices, which Kim envisions could be used to build hybrid electronic systems as small as a fingernail and as powerful as a supercomputer. He credits the group’s many innovations to the more than 40 students, postdocs, and research scientists who have contributed to his lab.

“I hope this is where they can learn that research can be an art,” Kim says. “To students especially, I hope they see that, if they enjoy what they do, then they can be whatever they want to be.”

© Photo: Jake Belcher

“For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things,” says Jeehwan Kim.
  • ✇Semiconductor Engineering
  • Margin Sensors In The WildBarry Pangrle
    Back in March, I wrote up an article here that looked at how a proxy circuit could be used to measure variations in circuit performance as conditions changed in the operating environment. There were a couple of recent presentations on margin sensors at two of the big EDA vendors’ customer engineering forums that we’ll look at as well as another product with an upcoming presentation at DAC. Margin sensors have applications for silicon health and performance monitoring for SoCs, characterization,
     

Margin Sensors In The Wild

10. Červen 2024 v 09:01

Back in March, I wrote up an article here that looked at how a proxy circuit could be used to measure variations in circuit performance as conditions changed in the operating environment. There were a couple of recent presentations on margin sensors at two of the big EDA vendors’ customer engineering forums that we’ll look at as well as another product with an upcoming presentation at DAC. Margin sensors have applications for silicon health and performance monitoring for SoCs, characterization, yield, reliability, safety, power, and performance. How they are configured, though, determines their best suited tasks.

The first presentation was given at Synopsys’ SNUG Silicon Valley on March 20, 2024, titled “Diagnosis of Timing Margin on Silicon with PMM (Path Margin Monitor)”, by Gurnrack Moon, Principal Engineer at Samsung. One of the key aspects of the PMM that Samsung appreciated was the closer correlation between the PMM and the actual paths versus, say, using a Ring Oscillator approach.

Fig. 1: Synopsys Path Margin Monitor diagram. (Source: Synopsys)

My previous article described how the “Monitor Logic” portion of the PMM diagram shown above in figure 1 would conceptually work. Taps taken along the synthetic circuit of buffers could be compared to see how far the signal made it down the path and thus determine how much margin is available. A strength of this approach is that it allows one PMM to be used on multiple paths. It does have a disadvantage, though, of introducing additional control overhead and adding additional delay components in to the monitor path.

The PMMs on the chip are connected in a daisy-chain fashion which reduces the number of signals needed to send information from the PMMs to the Path Margin Monitor Controller. This also reduces the number of signals for communication. This setup efficiently uses chip area to provide information about the state of the silicon. Typically, one might expect this type of capability to be exercised in a “diagnostic” mode where data would be captured, analyzed, and then used to determine appropriate voltage and frequency settings as opposed to a more dynamic or adaptive approach.

Samsung appreciated being able to “determine if there are problems or what is different from what is designed, and what needs to be improved. In addition, PMM data fed to the Synopsys Silicon.da analytics platform provides rich analytics, shortening the debug/analysis time.” This was used on production silicon. Synopsys also has other blog articles here and here for the interested reader.

The second presentation was given at CadenceLIVE Silicon Valley, April 17, 2024, titled “Challenges in Datacenters: Search for Advanced Power Management Mechanisms”, and presented by Ziv Paz, Vice President of Business Development at proteanTecs. His presentation focused on proteanTecs’ Margin Agents and noted how these sensors were sensitive to process, aging, workload stress, latent defects, operating conditions, DC IR drops, and local Vdroops.

Fig. 2: Reducing voltage while staying within margin. (Source: proteanTecs, CadenceLIVE)

Figure 2 shows how designers must handle “worst-case” scenarios and often do so by creating enough margin to operate under those conditions. In the diagram shown here, that margin shows up as a higher operating VDD. If the normal operating mode is 650mV with an allowance for a -10% change in VDD then the design is implemented to run at 585mV (90% * 650mV). Most of the time though, the circuitry will operate properly below 650mV so that running at 650mV is just wasting energy.

proteanTecs then presented a case study that was designed using TSMC’s 5nm technology. The chip incorporated 448 margin agents consisting of buffers with a unit delay of 7ps.

Fig. 3: Example margin agents and corresponding voltage. (Source: proteanTecs, CadenceLIVE)

Figure 3 above shows the margin agents (all 448) on the left side with the thicker black line showing the worst case for all 448. The right side shows the voltage. It also demonstrates that when the threshold is lowered the voltage will now drop to 614mV and the design continues to operate properly.

Fig. 4: Example margin agents with droop and corresponding voltage. (Source: proteanTecs, CadenceLIVE)

Figure 4 shows that as the voltage on the right drops that the worst-case margin agent values also drop and once they cross the yellow(-ish) line the voltage is signaled to return to the pre-AVS voltage of 650mV. The margin agent values then improve and the AVS voltage of 614mV will kick back in. By reacting when the margin agents cross the yellow line, it allows time for the voltage to increase and adjust before the voltage hits the red (585mV) line, thus always keeping it in the proper operating zone.

For this case, proteanTecs saw a 10.77% power saving and said that they’ve typically seen savings in the 9%-14% range. For this data center-oriented customer, this was important because of a limited power budget per rack, cooling limitations, carbon neutrality requirements (PUE), and a high CAPEX. Other benefits are a higher MTTF, lower maintenance costs, and a prolonged system lifetime. proteanTecs claimed a minimal impact on area and that currently most of their designs are in 7nm, 5nm, and below.

The third vendor announced their Aeonic Insight product line including a droop detector on November 14, 2023. Movellus’ Michael Durr, Director of Application Engineering is scheduled to give a talk at DAC on Wednesday, June 26, 2024, titled “Droop! There it is!” Movellus has been long known for their digital clock generation IP and, as one might guess, their design uses a synthetic circuit for detecting changes in the operating environment. Leveraging their clock generation expertise, they are initially targeting an adaptive frequency (or clock) scaling (AFS) approach that also leverages their digital clock generation IP.

The post Margin Sensors In The Wild appeared first on Semiconductor Engineering.

  • ✇MIT News - Nanoscience and nanotechnology | MIT.nano
  • Pushing material boundaries for better electronicsJennifer Chu | MIT News
    Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim. A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics. His research aims to push electronics past the in
     

Pushing material boundaries for better electronics

Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim.

A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics.

His research aims to push electronics past the inherent limits of silicon — a material that has reliably powered transistors and most other electronic elements but is reaching a performance limit as more computing power is packed into ever smaller devices.

Today, Kim and his students at MIT are exploring materials, devices, and systems that could take over where silicon leaves off. Kim is applying his insights to design next-generation devices, including low-power, high-performance transistors and memory devices, artificial intelligence chips, ultra-high-definition micro-LED displays, and flexible electronic “skin.” Ultimately, he envisions such beyond-silicon devices could be built into supercomputers small enough to fit in your pocket.

The innovations that have come out of his research are recorded in more than 200 issued U.S. patents and 70 research papers — an extensive list that he and his students continue to grow.

Kim credits many of his breakthroughs to the fundamentals he learned in his university days. In fact, he has carried his college textbooks and notes with him with every move. Today, he keeps the undergraduate notes — written in a light and meticulous graphite and ink — on a shelf nearest to his MIT desk, close at hand. He references them in his own class lectures and presentations, and when brainstorming research solutions.

“These textbooks are all in my brain now,” Kim says. “I’ve learned that if you completely understand the fundamentals, you can solve any problem.”

Fundamental shift

Kim wasn’t always a model student. Growing up in Seoul, South Korea, he was fixed on a musical career. He had a passion for singing and was bored by most other high school subjects.

“It was very monotonic,” Kim recalls. “My motivation for high school subjects was very low.”

After graduating high school, he enrolled in a materials science program at Hongik University, where he was lucky to met professors who had graduated from MIT and who later motivated him to study in the United States. But, Kim spent his first year there trying to make it as a musician. He wrote and sang songs that he recorded and sent to promoters, and went to multiple auditions. But after a year, he was faced with no call-backs, and a hard question.

“What should I do? It was a crisis to me,” Kim says.

In his second year, he decided to give materials science a go. When he sat in on his first class, he was surprised to find that the subject — the structure and behavior of materials at the atomic scale — made him want to learn more.

“My first year, my GPA was almost zero because I didn’t attend class, and was going to be kicked out,” Kim says. “Then from my second year on, I really loved every single subject in materials science. People who saw me in the library were surprised: ‘What are you doing here, without a guitar?’ I must have read these textbooks more than 10 times, and felt I really understood everything fundamental.”

Back to basics

He took this newfound passion to Seoul National University, where he enrolled in the materials science master’s program and learned to apply the ideas he absorbed to hands-on research problems. Metallurgy was a dominant field at the time, and Kim was assigned to experiment with high-temperature alloys — mixing and melting metallic powders to create materials that could be used in high-performance engines.

After completing his master’s, Kim wanted to continue with a PhD, overseas. But to do so, he first had to serve in the military. He spent the next two and a half years in the Korean air force, helping to maintain and refuel aircraft, and inventory their parts. All the while, he prepared applications to graduate schools abroad.

In 2003, after completing his service, he headed overseas, where he was accepted to the materials science graduate program at the University of California at Los Angeles with a fellowship.

“When I came out of the airplane and went to the dorm for the first day, people were drinking Corona on the balcony, playing music, and there was beautiful weather, and I thought, this is where I’m supposed to be!” Kim recalls.

For his PhD, he began to dive into the microscopic world of electronic materials, seeking ways to manipulate them to make faster electronics. The subject was a focus for his advisor, who previously worked at Bell Labs, where many computing innovations originated at the time.

“A lot of the papers I was reading were from Bell Labs, and IBM T.J. Watson, and I was so impressed, and thought: I really want to be a scientist there. That was my dream,” Kim says.

During his PhD program, he reached out to a scientist at IBM whose name kept coming up in the papers Kim was reading. In his initial letter, Kim wrote with a question about his own PhD work, which tackled a hard industry problem: how to stretch, or “strain,” silicon to minimize defects that would occur as more transistors are packed on a chip. 

The query opened a dialogue, and Kim eventually inquired and was accepted to an internship at the IBM T.J. Watson Research Center, just outside New York City. Soon after he arrived, his manager pitched him a challenge: He might be hired full-time if he could solve a new, harder problem, having to do with replacing silicon.

At the time, the electronics industry was looking to germanium as a possible successor to silicon. The material can conduct electrons at even smaller scales, which would enable germanium to be made into even tinier transistors, for faster, smaller, and more powerful devices. But there was no reliable way for germanium to be “doped” — an essential process that replaces some of a material’s atoms with another type of atom in a way that controls how electrons flow through the material.

“My manager told me he didn’t expect me to solve this. But I really wanted the job,” Kim says. “So day and night, I thought, how to solve this? And I always went back to the textbooks.”

Those textbooks reminded him of a fundamental rule: Replacing one atom with another would work well if both atoms were of similar size. This revelation triggered an idea. Perhaps germanium could be doped with a combination of two different atoms with an average atomic size that is similar to germanium’s.

“I came up with this idea, and right after, IBM showed that it worked. I was so amazed,” Kim says. “From that point, research became my passion. I did it because it was just so fun. Singing is not so different from performing research.”

As promised, he was hired as a postdoc and soon after, promoted to research staff member — a title he carried, literally, with pride.

“I was feeling so happy to be there,” Kim says. “I even wore my IBM badge to restaurants, and everywhere I went.”

Throughout his time at IBM, he learned to focus on research that directly impacts everyday human life, and how to apply the fundamentals to develop next-generation products.

“IBM really raised me up as an engineer who can identify the problems in an industry and find creative solutions to tackle the challenges,” he says.

Cycle of life

And yet, Kim felt he could do more. He was working on boundary-pushing research at one of the leading innovation hubs in the country, where “out-of-the-box” thinking was encouraged, and experimentally tested. But he wanted to explore beyond the company’s research portfolio, and also, find a way to pursue research not just as a profession but as a passion.

“My experience taught me that you can lead a very happy life as an engineer or scientist if your research becomes your hobby,” Kim says. “I wanted to teach this cycle — of happiness, research, and passion — to young people and help PhD students develop like artists or singers.”

In 2015, he packed his bags for MIT, where he accepted a junior faculty position in the Department of Mechanical Engineering. His first impressions upon arriving at the Institute?

“Freedom,” Kim says. “For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things.”

Since he’s put down roots on campus, he has built up a highly productive research group, focused on fabricating ultra-thin, stackable, high-performance electronic materials and devices, which Kim envisions could be used to build hybrid electronic systems as small as a fingernail and as powerful as a supercomputer. He credits the group’s many innovations to the more than 40 students, postdocs, and research scientists who have contributed to his lab.

“I hope this is where they can learn that research can be an art,” Kim says. “To students especially, I hope they see that, if they enjoy what they do, then they can be whatever they want to be.”

© Photo: Jake Belcher

“For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things,” says Jeehwan Kim.
  • ✇IEEE Spectrum
  • Video Friday: MultitaskingEvan Ackerman
    Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion. RoboCup 2024: 17–22 July 2024, EINDHOVEN, NETHERLANDSICSR 2024: 23–26 October 2024, ODENSE, DENMARKCybathlon 2024: 25–27 October 2024, ZURICH Enjoy today’s videos! Do you have trouble multitasking? Cyborgize yourself through muscle stimulation to
     

Video Friday: Multitasking

31. Květen 2024 v 18:00


Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

RoboCup 2024: 17–22 July 2024, EINDHOVEN, NETHERLANDS
ICSR 2024: 23–26 October 2024, ODENSE, DENMARK
Cybathlon 2024: 25–27 October 2024, ZURICH

Enjoy today’s videos!

Do you have trouble multitasking? Cyborgize yourself through muscle stimulation to automate repetitive physical tasks while you focus on something else.

[ SplitBody ]

By combining a 5,000 frame-per-second (FPS) event camera with a 20-FPS RGB camera, roboticists from the University of Zurich have developed a much more effective vision system that keeps autonomous cars from crashing into stuff, as described in the current issue of Nature.

[ Nature ]

Mitsubishi Electric has been awarded the GUINNESS WORLD RECORDS title for the fastest robot to solve a puzzle cube. The robot’s time of 0.305 second beat the previous record of 0.38 second, for which it received a GUINNESS WORLD RECORDS certificate on 21 May 2024.

[ Mitsubishi ]

Sony’s AIBO is celebrating its 25th anniversary, which seems like a long time, and it is. But back then, the original AIBO could check your email for you. Email! In 1999!

I miss Hotmail.

[ AIBO ]

SchniPoSa: schnitzel with french fries and a salad.

[ Dino Robotics ]

Cloth-folding is still a really hard problem for robots, but progress was made at ICRA!

[ ICRA Cloth Competition ]

Thanks, Francis!

MIT CSAIL researchers enhance robotic precision with sophisticated tactile sensors in the palm and agile fingers, setting the stage for improvements in human-robot interaction and prosthetic technology.

[ MIT ]

We present a novel adversarial attack method designed to identify failure cases in any type of locomotion controller, including state-of-the-art reinforcement-learning-based controllers. Our approach reveals the vulnerabilities of black-box neural network controllers, providing valuable insights that can be leveraged to enhance robustness through retraining.

[ Fan Shi ]

In this work, we investigate a novel integrated flexible OLED display technology used as a robotic skin-interface to improve robot-to-human communication in a real industrial setting at Volkswagen or a collaborative human-robot interaction task in motor assembly. The interface was implemented in a workcell and validated qualitatively with a small group of operators (n=9) and quantitatively with a large group (n=42). The validation results showed that using flexible OLED technology could improve the operators’ attitude toward the robot; increase their intention to use the robot; enhance their perceived enjoyment, social influence, and trust; and reduce their anxiety.

[ Paper ]

Thanks, Bram!

We introduce InflatableBots, shape-changing inflatable robots for large-scale encountered-type haptics in VR. Unlike traditional inflatable shape displays, which are immobile and limited in interaction areas, our approach combines mobile robots with fan-based inflatable structures. This enables safe, scalable, and deployable haptic interactions on a large scale.

[ InflatableBots ]

We present a bioinspired passive dynamic foot in which the claws are actuated solely by the impact energy. Our gripper simultaneously resolves the issue of smooth absorption of the impact energy and fast closure of the claws by linking the motion of an ankle linkage and the claws through soft tendons.

[ Paper ]

In this video, a 3-UPU exoskeleton robot for a wrist joint is designed and controlled to perform wrist extension, flexion, radial-deviation, and ulnar-deviation motions in stroke-affected patients. This is the first time a 3-UPU robot has been used effectively for any kind of task.

“UPU” stands for “universal-prismatic-universal” and refers to the actuators—the prismatic joints between two universal joints.

[ BAS ]

Thanks, Tony!

BRUCE Got Spot-ted at ICRA2024.

[ Westwood Robotics ]

Parachutes: maybe not as good of an idea for drones as you might think.

[ Wing ]

In this paper, we propose a system for the artist-directed authoring of stylized bipedal walking gaits, tailored for execution on robotic characters. To demonstrate the utility of our approach, we animate gaits for a custom, free-walking robotic character, and show, with two additional in-simulation examples, how our procedural animation technique generalizes to bipeds with different degrees of freedom, proportions, and mass distributions.

[ Disney Research ]

The European drone project Labyrinth aims to keep new and conventional air traffic separate, especially in busy airspaces such as those expected in urban areas. The project provides a new drone-traffic service and illustrates its potential to improve the safety and efficiency of civil land, air, and sea transport, as well as emergency and rescue operations.

[ DLR ]

This Carnegie Mellon University Robotics Institute seminar, by Kim Baraka at Vrije Universiteit Amsterdam, is on the topic “Why We Should Build Robot Apprentices and Why We Shouldn’t Do It Alone.”

For robots to be able to truly integrate human-populated, dynamic, and unpredictable environments, they will have to have strong adaptive capabilities. In this talk, I argue that these adaptive capabilities should leverage interaction with end users, who know how (they want) a robot to act in that environment. I will present an overview of my past and ongoing work on the topic of human-interactive robot learning, a growing interdisciplinary subfield that embraces rich, bidirectional interaction to shape robot learning. I will discuss contributions on the algorithmic, interface, and interaction design fronts, showcasing several collaborations with animal behaviorists/trainers, dancers, puppeteers, and medical practitioners.

[ CMU RI ]

  • ✇MIT News - Nanoscience and nanotechnology | MIT.nano
  • Pushing material boundaries for better electronicsJennifer Chu | MIT News
    Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim. A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics. His research aims to push electronics past the in
     

Pushing material boundaries for better electronics

Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim.

A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics.

His research aims to push electronics past the inherent limits of silicon — a material that has reliably powered transistors and most other electronic elements but is reaching a performance limit as more computing power is packed into ever smaller devices.

Today, Kim and his students at MIT are exploring materials, devices, and systems that could take over where silicon leaves off. Kim is applying his insights to design next-generation devices, including low-power, high-performance transistors and memory devices, artificial intelligence chips, ultra-high-definition micro-LED displays, and flexible electronic “skin.” Ultimately, he envisions such beyond-silicon devices could be built into supercomputers small enough to fit in your pocket.

The innovations that have come out of his research are recorded in more than 200 issued U.S. patents and 70 research papers — an extensive list that he and his students continue to grow.

Kim credits many of his breakthroughs to the fundamentals he learned in his university days. In fact, he has carried his college textbooks and notes with him with every move. Today, he keeps the undergraduate notes — written in a light and meticulous graphite and ink — on a shelf nearest to his MIT desk, close at hand. He references them in his own class lectures and presentations, and when brainstorming research solutions.

“These textbooks are all in my brain now,” Kim says. “I’ve learned that if you completely understand the fundamentals, you can solve any problem.”

Fundamental shift

Kim wasn’t always a model student. Growing up in Seoul, South Korea, he was fixed on a musical career. He had a passion for singing and was bored by most other high school subjects.

“It was very monotonic,” Kim recalls. “My motivation for high school subjects was very low.”

After graduating high school, he enrolled in a materials science program at Hongik University, where he was lucky to met professors who had graduated from MIT and who later motivated him to study in the United States. But, Kim spent his first year there trying to make it as a musician. He wrote and sang songs that he recorded and sent to promoters, and went to multiple auditions. But after a year, he was faced with no call-backs, and a hard question.

“What should I do? It was a crisis to me,” Kim says.

In his second year, he decided to give materials science a go. When he sat in on his first class, he was surprised to find that the subject — the structure and behavior of materials at the atomic scale — made him want to learn more.

“My first year, my GPA was almost zero because I didn’t attend class, and was going to be kicked out,” Kim says. “Then from my second year on, I really loved every single subject in materials science. People who saw me in the library were surprised: ‘What are you doing here, without a guitar?’ I must have read these textbooks more than 10 times, and felt I really understood everything fundamental.”

Back to basics

He took this newfound passion to Seoul National University, where he enrolled in the materials science master’s program and learned to apply the ideas he absorbed to hands-on research problems. Metallurgy was a dominant field at the time, and Kim was assigned to experiment with high-temperature alloys — mixing and melting metallic powders to create materials that could be used in high-performance engines.

After completing his master’s, Kim wanted to continue with a PhD, overseas. But to do so, he first had to serve in the military. He spent the next two and a half years in the Korean air force, helping to maintain and refuel aircraft, and inventory their parts. All the while, he prepared applications to graduate schools abroad.

In 2003, after completing his service, he headed overseas, where he was accepted to the materials science graduate program at the University of California at Los Angeles with a fellowship.

“When I came out of the airplane and went to the dorm for the first day, people were drinking Corona on the balcony, playing music, and there was beautiful weather, and I thought, this is where I’m supposed to be!” Kim recalls.

For his PhD, he began to dive into the microscopic world of electronic materials, seeking ways to manipulate them to make faster electronics. The subject was a focus for his advisor, who previously worked at Bell Labs, where many computing innovations originated at the time.

“A lot of the papers I was reading were from Bell Labs, and IBM T.J. Watson, and I was so impressed, and thought: I really want to be a scientist there. That was my dream,” Kim says.

During his PhD program, he reached out to a scientist at IBM whose name kept coming up in the papers Kim was reading. In his initial letter, Kim wrote with a question about his own PhD work, which tackled a hard industry problem: how to stretch, or “strain,” silicon to minimize defects that would occur as more transistors are packed on a chip. 

The query opened a dialogue, and Kim eventually inquired and was accepted to an internship at the IBM T.J. Watson Research Center, just outside New York City. Soon after he arrived, his manager pitched him a challenge: He might be hired full-time if he could solve a new, harder problem, having to do with replacing silicon.

At the time, the electronics industry was looking to germanium as a possible successor to silicon. The material can conduct electrons at even smaller scales, which would enable germanium to be made into even tinier transistors, for faster, smaller, and more powerful devices. But there was no reliable way for germanium to be “doped” — an essential process that replaces some of a material’s atoms with another type of atom in a way that controls how electrons flow through the material.

“My manager told me he didn’t expect me to solve this. But I really wanted the job,” Kim says. “So day and night, I thought, how to solve this? And I always went back to the textbooks.”

Those textbooks reminded him of a fundamental rule: Replacing one atom with another would work well if both atoms were of similar size. This revelation triggered an idea. Perhaps germanium could be doped with a combination of two different atoms with an average atomic size that is similar to germanium’s.

“I came up with this idea, and right after, IBM showed that it worked. I was so amazed,” Kim says. “From that point, research became my passion. I did it because it was just so fun. Singing is not so different from performing research.”

As promised, he was hired as a postdoc and soon after, promoted to research staff member — a title he carried, literally, with pride.

“I was feeling so happy to be there,” Kim says. “I even wore my IBM badge to restaurants, and everywhere I went.”

Throughout his time at IBM, he learned to focus on research that directly impacts everyday human life, and how to apply the fundamentals to develop next-generation products.

“IBM really raised me up as an engineer who can identify the problems in an industry and find creative solutions to tackle the challenges,” he says.

Cycle of life

And yet, Kim felt he could do more. He was working on boundary-pushing research at one of the leading innovation hubs in the country, where “out-of-the-box” thinking was encouraged, and experimentally tested. But he wanted to explore beyond the company’s research portfolio, and also, find a way to pursue research not just as a profession but as a passion.

“My experience taught me that you can lead a very happy life as an engineer or scientist if your research becomes your hobby,” Kim says. “I wanted to teach this cycle — of happiness, research, and passion — to young people and help PhD students develop like artists or singers.”

In 2015, he packed his bags for MIT, where he accepted a junior faculty position in the Department of Mechanical Engineering. His first impressions upon arriving at the Institute?

“Freedom,” Kim says. “For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things.”

Since he’s put down roots on campus, he has built up a highly productive research group, focused on fabricating ultra-thin, stackable, high-performance electronic materials and devices, which Kim envisions could be used to build hybrid electronic systems as small as a fingernail and as powerful as a supercomputer. He credits the group’s many innovations to the more than 40 students, postdocs, and research scientists who have contributed to his lab.

“I hope this is where they can learn that research can be an art,” Kim says. “To students especially, I hope they see that, if they enjoy what they do, then they can be whatever they want to be.”

© Photo: Jake Belcher

“For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things,” says Jeehwan Kim.
  • ✇MIT News - Nanoscience and nanotechnology | MIT.nano
  • Pushing material boundaries for better electronicsJennifer Chu | MIT News
    Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim. A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics. His research aims to push electronics past the in
     

Pushing material boundaries for better electronics

Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim.

A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics.

His research aims to push electronics past the inherent limits of silicon — a material that has reliably powered transistors and most other electronic elements but is reaching a performance limit as more computing power is packed into ever smaller devices.

Today, Kim and his students at MIT are exploring materials, devices, and systems that could take over where silicon leaves off. Kim is applying his insights to design next-generation devices, including low-power, high-performance transistors and memory devices, artificial intelligence chips, ultra-high-definition micro-LED displays, and flexible electronic “skin.” Ultimately, he envisions such beyond-silicon devices could be built into supercomputers small enough to fit in your pocket.

The innovations that have come out of his research are recorded in more than 200 issued U.S. patents and 70 research papers — an extensive list that he and his students continue to grow.

Kim credits many of his breakthroughs to the fundamentals he learned in his university days. In fact, he has carried his college textbooks and notes with him with every move. Today, he keeps the undergraduate notes — written in a light and meticulous graphite and ink — on a shelf nearest to his MIT desk, close at hand. He references them in his own class lectures and presentations, and when brainstorming research solutions.

“These textbooks are all in my brain now,” Kim says. “I’ve learned that if you completely understand the fundamentals, you can solve any problem.”

Fundamental shift

Kim wasn’t always a model student. Growing up in Seoul, South Korea, he was fixed on a musical career. He had a passion for singing and was bored by most other high school subjects.

“It was very monotonic,” Kim recalls. “My motivation for high school subjects was very low.”

After graduating high school, he enrolled in a materials science program at Hongik University, where he was lucky to met professors who had graduated from MIT and who later motivated him to study in the United States. But, Kim spent his first year there trying to make it as a musician. He wrote and sang songs that he recorded and sent to promoters, and went to multiple auditions. But after a year, he was faced with no call-backs, and a hard question.

“What should I do? It was a crisis to me,” Kim says.

In his second year, he decided to give materials science a go. When he sat in on his first class, he was surprised to find that the subject — the structure and behavior of materials at the atomic scale — made him want to learn more.

“My first year, my GPA was almost zero because I didn’t attend class, and was going to be kicked out,” Kim says. “Then from my second year on, I really loved every single subject in materials science. People who saw me in the library were surprised: ‘What are you doing here, without a guitar?’ I must have read these textbooks more than 10 times, and felt I really understood everything fundamental.”

Back to basics

He took this newfound passion to Seoul National University, where he enrolled in the materials science master’s program and learned to apply the ideas he absorbed to hands-on research problems. Metallurgy was a dominant field at the time, and Kim was assigned to experiment with high-temperature alloys — mixing and melting metallic powders to create materials that could be used in high-performance engines.

After completing his master’s, Kim wanted to continue with a PhD, overseas. But to do so, he first had to serve in the military. He spent the next two and a half years in the Korean air force, helping to maintain and refuel aircraft, and inventory their parts. All the while, he prepared applications to graduate schools abroad.

In 2003, after completing his service, he headed overseas, where he was accepted to the materials science graduate program at the University of California at Los Angeles with a fellowship.

“When I came out of the airplane and went to the dorm for the first day, people were drinking Corona on the balcony, playing music, and there was beautiful weather, and I thought, this is where I’m supposed to be!” Kim recalls.

For his PhD, he began to dive into the microscopic world of electronic materials, seeking ways to manipulate them to make faster electronics. The subject was a focus for his advisor, who previously worked at Bell Labs, where many computing innovations originated at the time.

“A lot of the papers I was reading were from Bell Labs, and IBM T.J. Watson, and I was so impressed, and thought: I really want to be a scientist there. That was my dream,” Kim says.

During his PhD program, he reached out to a scientist at IBM whose name kept coming up in the papers Kim was reading. In his initial letter, Kim wrote with a question about his own PhD work, which tackled a hard industry problem: how to stretch, or “strain,” silicon to minimize defects that would occur as more transistors are packed on a chip. 

The query opened a dialogue, and Kim eventually inquired and was accepted to an internship at the IBM T.J. Watson Research Center, just outside New York City. Soon after he arrived, his manager pitched him a challenge: He might be hired full-time if he could solve a new, harder problem, having to do with replacing silicon.

At the time, the electronics industry was looking to germanium as a possible successor to silicon. The material can conduct electrons at even smaller scales, which would enable germanium to be made into even tinier transistors, for faster, smaller, and more powerful devices. But there was no reliable way for germanium to be “doped” — an essential process that replaces some of a material’s atoms with another type of atom in a way that controls how electrons flow through the material.

“My manager told me he didn’t expect me to solve this. But I really wanted the job,” Kim says. “So day and night, I thought, how to solve this? And I always went back to the textbooks.”

Those textbooks reminded him of a fundamental rule: Replacing one atom with another would work well if both atoms were of similar size. This revelation triggered an idea. Perhaps germanium could be doped with a combination of two different atoms with an average atomic size that is similar to germanium’s.

“I came up with this idea, and right after, IBM showed that it worked. I was so amazed,” Kim says. “From that point, research became my passion. I did it because it was just so fun. Singing is not so different from performing research.”

As promised, he was hired as a postdoc and soon after, promoted to research staff member — a title he carried, literally, with pride.

“I was feeling so happy to be there,” Kim says. “I even wore my IBM badge to restaurants, and everywhere I went.”

Throughout his time at IBM, he learned to focus on research that directly impacts everyday human life, and how to apply the fundamentals to develop next-generation products.

“IBM really raised me up as an engineer who can identify the problems in an industry and find creative solutions to tackle the challenges,” he says.

Cycle of life

And yet, Kim felt he could do more. He was working on boundary-pushing research at one of the leading innovation hubs in the country, where “out-of-the-box” thinking was encouraged, and experimentally tested. But he wanted to explore beyond the company’s research portfolio, and also, find a way to pursue research not just as a profession but as a passion.

“My experience taught me that you can lead a very happy life as an engineer or scientist if your research becomes your hobby,” Kim says. “I wanted to teach this cycle — of happiness, research, and passion — to young people and help PhD students develop like artists or singers.”

In 2015, he packed his bags for MIT, where he accepted a junior faculty position in the Department of Mechanical Engineering. His first impressions upon arriving at the Institute?

“Freedom,” Kim says. “For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things.”

Since he’s put down roots on campus, he has built up a highly productive research group, focused on fabricating ultra-thin, stackable, high-performance electronic materials and devices, which Kim envisions could be used to build hybrid electronic systems as small as a fingernail and as powerful as a supercomputer. He credits the group’s many innovations to the more than 40 students, postdocs, and research scientists who have contributed to his lab.

“I hope this is where they can learn that research can be an art,” Kim says. “To students especially, I hope they see that, if they enjoy what they do, then they can be whatever they want to be.”

© Photo: Jake Belcher

“For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things,” says Jeehwan Kim.
  • ✇MIT News - Nanoscience and nanotechnology | MIT.nano
  • Pushing material boundaries for better electronicsJennifer Chu | MIT News
    Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim. A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics. His research aims to push electronics past the in
     

Pushing material boundaries for better electronics

Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim.

A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics.

His research aims to push electronics past the inherent limits of silicon — a material that has reliably powered transistors and most other electronic elements but is reaching a performance limit as more computing power is packed into ever smaller devices.

Today, Kim and his students at MIT are exploring materials, devices, and systems that could take over where silicon leaves off. Kim is applying his insights to design next-generation devices, including low-power, high-performance transistors and memory devices, artificial intelligence chips, ultra-high-definition micro-LED displays, and flexible electronic “skin.” Ultimately, he envisions such beyond-silicon devices could be built into supercomputers small enough to fit in your pocket.

The innovations that have come out of his research are recorded in more than 200 issued U.S. patents and 70 research papers — an extensive list that he and his students continue to grow.

Kim credits many of his breakthroughs to the fundamentals he learned in his university days. In fact, he has carried his college textbooks and notes with him with every move. Today, he keeps the undergraduate notes — written in a light and meticulous graphite and ink — on a shelf nearest to his MIT desk, close at hand. He references them in his own class lectures and presentations, and when brainstorming research solutions.

“These textbooks are all in my brain now,” Kim says. “I’ve learned that if you completely understand the fundamentals, you can solve any problem.”

Fundamental shift

Kim wasn’t always a model student. Growing up in Seoul, South Korea, he was fixed on a musical career. He had a passion for singing and was bored by most other high school subjects.

“It was very monotonic,” Kim recalls. “My motivation for high school subjects was very low.”

After graduating high school, he enrolled in a materials science program at Hongik University, where he was lucky to met professors who had graduated from MIT and who later motivated him to study in the United States. But, Kim spent his first year there trying to make it as a musician. He wrote and sang songs that he recorded and sent to promoters, and went to multiple auditions. But after a year, he was faced with no call-backs, and a hard question.

“What should I do? It was a crisis to me,” Kim says.

In his second year, he decided to give materials science a go. When he sat in on his first class, he was surprised to find that the subject — the structure and behavior of materials at the atomic scale — made him want to learn more.

“My first year, my GPA was almost zero because I didn’t attend class, and was going to be kicked out,” Kim says. “Then from my second year on, I really loved every single subject in materials science. People who saw me in the library were surprised: ‘What are you doing here, without a guitar?’ I must have read these textbooks more than 10 times, and felt I really understood everything fundamental.”

Back to basics

He took this newfound passion to Seoul National University, where he enrolled in the materials science master’s program and learned to apply the ideas he absorbed to hands-on research problems. Metallurgy was a dominant field at the time, and Kim was assigned to experiment with high-temperature alloys — mixing and melting metallic powders to create materials that could be used in high-performance engines.

After completing his master’s, Kim wanted to continue with a PhD, overseas. But to do so, he first had to serve in the military. He spent the next two and a half years in the Korean air force, helping to maintain and refuel aircraft, and inventory their parts. All the while, he prepared applications to graduate schools abroad.

In 2003, after completing his service, he headed overseas, where he was accepted to the materials science graduate program at the University of California at Los Angeles with a fellowship.

“When I came out of the airplane and went to the dorm for the first day, people were drinking Corona on the balcony, playing music, and there was beautiful weather, and I thought, this is where I’m supposed to be!” Kim recalls.

For his PhD, he began to dive into the microscopic world of electronic materials, seeking ways to manipulate them to make faster electronics. The subject was a focus for his advisor, who previously worked at Bell Labs, where many computing innovations originated at the time.

“A lot of the papers I was reading were from Bell Labs, and IBM T.J. Watson, and I was so impressed, and thought: I really want to be a scientist there. That was my dream,” Kim says.

During his PhD program, he reached out to a scientist at IBM whose name kept coming up in the papers Kim was reading. In his initial letter, Kim wrote with a question about his own PhD work, which tackled a hard industry problem: how to stretch, or “strain,” silicon to minimize defects that would occur as more transistors are packed on a chip. 

The query opened a dialogue, and Kim eventually inquired and was accepted to an internship at the IBM T.J. Watson Research Center, just outside New York City. Soon after he arrived, his manager pitched him a challenge: He might be hired full-time if he could solve a new, harder problem, having to do with replacing silicon.

At the time, the electronics industry was looking to germanium as a possible successor to silicon. The material can conduct electrons at even smaller scales, which would enable germanium to be made into even tinier transistors, for faster, smaller, and more powerful devices. But there was no reliable way for germanium to be “doped” — an essential process that replaces some of a material’s atoms with another type of atom in a way that controls how electrons flow through the material.

“My manager told me he didn’t expect me to solve this. But I really wanted the job,” Kim says. “So day and night, I thought, how to solve this? And I always went back to the textbooks.”

Those textbooks reminded him of a fundamental rule: Replacing one atom with another would work well if both atoms were of similar size. This revelation triggered an idea. Perhaps germanium could be doped with a combination of two different atoms with an average atomic size that is similar to germanium’s.

“I came up with this idea, and right after, IBM showed that it worked. I was so amazed,” Kim says. “From that point, research became my passion. I did it because it was just so fun. Singing is not so different from performing research.”

As promised, he was hired as a postdoc and soon after, promoted to research staff member — a title he carried, literally, with pride.

“I was feeling so happy to be there,” Kim says. “I even wore my IBM badge to restaurants, and everywhere I went.”

Throughout his time at IBM, he learned to focus on research that directly impacts everyday human life, and how to apply the fundamentals to develop next-generation products.

“IBM really raised me up as an engineer who can identify the problems in an industry and find creative solutions to tackle the challenges,” he says.

Cycle of life

And yet, Kim felt he could do more. He was working on boundary-pushing research at one of the leading innovation hubs in the country, where “out-of-the-box” thinking was encouraged, and experimentally tested. But he wanted to explore beyond the company’s research portfolio, and also, find a way to pursue research not just as a profession but as a passion.

“My experience taught me that you can lead a very happy life as an engineer or scientist if your research becomes your hobby,” Kim says. “I wanted to teach this cycle — of happiness, research, and passion — to young people and help PhD students develop like artists or singers.”

In 2015, he packed his bags for MIT, where he accepted a junior faculty position in the Department of Mechanical Engineering. His first impressions upon arriving at the Institute?

“Freedom,” Kim says. “For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things.”

Since he’s put down roots on campus, he has built up a highly productive research group, focused on fabricating ultra-thin, stackable, high-performance electronic materials and devices, which Kim envisions could be used to build hybrid electronic systems as small as a fingernail and as powerful as a supercomputer. He credits the group’s many innovations to the more than 40 students, postdocs, and research scientists who have contributed to his lab.

“I hope this is where they can learn that research can be an art,” Kim says. “To students especially, I hope they see that, if they enjoy what they do, then they can be whatever they want to be.”

© Photo: Jake Belcher

“For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things,” says Jeehwan Kim.
  • ✇MIT News - Nanoscience and nanotechnology | MIT.nano
  • Pushing material boundaries for better electronicsJennifer Chu | MIT News
    Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim. A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics. His research aims to push electronics past the in
     

Pushing material boundaries for better electronics

Undergrads, take note: The lessons you learn in those intro classes could be the key to making your next big discovery. At least, that’s been the case for MIT’s Jeehwan Kim.

A recently tenured faculty member in MIT’s departments of Mechanical Engineering and Materials Science and Engineering, Kim has made numerous discoveries about the nanostructure of materials and is funneling them directly into the advancement of next-generation electronics.

His research aims to push electronics past the inherent limits of silicon — a material that has reliably powered transistors and most other electronic elements but is reaching a performance limit as more computing power is packed into ever smaller devices.

Today, Kim and his students at MIT are exploring materials, devices, and systems that could take over where silicon leaves off. Kim is applying his insights to design next-generation devices, including low-power, high-performance transistors and memory devices, artificial intelligence chips, ultra-high-definition micro-LED displays, and flexible electronic “skin.” Ultimately, he envisions such beyond-silicon devices could be built into supercomputers small enough to fit in your pocket.

The innovations that have come out of his research are recorded in more than 200 issued U.S. patents and 70 research papers — an extensive list that he and his students continue to grow.

Kim credits many of his breakthroughs to the fundamentals he learned in his university days. In fact, he has carried his college textbooks and notes with him with every move. Today, he keeps the undergraduate notes — written in a light and meticulous graphite and ink — on a shelf nearest to his MIT desk, close at hand. He references them in his own class lectures and presentations, and when brainstorming research solutions.

“These textbooks are all in my brain now,” Kim says. “I’ve learned that if you completely understand the fundamentals, you can solve any problem.”

Fundamental shift

Kim wasn’t always a model student. Growing up in Seoul, South Korea, he was fixed on a musical career. He had a passion for singing and was bored by most other high school subjects.

“It was very monotonic,” Kim recalls. “My motivation for high school subjects was very low.”

After graduating high school, he enrolled in a materials science program at Hongik University, where he was lucky to met professors who had graduated from MIT and who later motivated him to study in the United States. But, Kim spent his first year there trying to make it as a musician. He wrote and sang songs that he recorded and sent to promoters, and went to multiple auditions. But after a year, he was faced with no call-backs, and a hard question.

“What should I do? It was a crisis to me,” Kim says.

In his second year, he decided to give materials science a go. When he sat in on his first class, he was surprised to find that the subject — the structure and behavior of materials at the atomic scale — made him want to learn more.

“My first year, my GPA was almost zero because I didn’t attend class, and was going to be kicked out,” Kim says. “Then from my second year on, I really loved every single subject in materials science. People who saw me in the library were surprised: ‘What are you doing here, without a guitar?’ I must have read these textbooks more than 10 times, and felt I really understood everything fundamental.”

Back to basics

He took this newfound passion to Seoul National University, where he enrolled in the materials science master’s program and learned to apply the ideas he absorbed to hands-on research problems. Metallurgy was a dominant field at the time, and Kim was assigned to experiment with high-temperature alloys — mixing and melting metallic powders to create materials that could be used in high-performance engines.

After completing his master’s, Kim wanted to continue with a PhD, overseas. But to do so, he first had to serve in the military. He spent the next two and a half years in the Korean air force, helping to maintain and refuel aircraft, and inventory their parts. All the while, he prepared applications to graduate schools abroad.

In 2003, after completing his service, he headed overseas, where he was accepted to the materials science graduate program at the University of California at Los Angeles with a fellowship.

“When I came out of the airplane and went to the dorm for the first day, people were drinking Corona on the balcony, playing music, and there was beautiful weather, and I thought, this is where I’m supposed to be!” Kim recalls.

For his PhD, he began to dive into the microscopic world of electronic materials, seeking ways to manipulate them to make faster electronics. The subject was a focus for his advisor, who previously worked at Bell Labs, where many computing innovations originated at the time.

“A lot of the papers I was reading were from Bell Labs, and IBM T.J. Watson, and I was so impressed, and thought: I really want to be a scientist there. That was my dream,” Kim says.

During his PhD program, he reached out to a scientist at IBM whose name kept coming up in the papers Kim was reading. In his initial letter, Kim wrote with a question about his own PhD work, which tackled a hard industry problem: how to stretch, or “strain,” silicon to minimize defects that would occur as more transistors are packed on a chip. 

The query opened a dialogue, and Kim eventually inquired and was accepted to an internship at the IBM T.J. Watson Research Center, just outside New York City. Soon after he arrived, his manager pitched him a challenge: He might be hired full-time if he could solve a new, harder problem, having to do with replacing silicon.

At the time, the electronics industry was looking to germanium as a possible successor to silicon. The material can conduct electrons at even smaller scales, which would enable germanium to be made into even tinier transistors, for faster, smaller, and more powerful devices. But there was no reliable way for germanium to be “doped” — an essential process that replaces some of a material’s atoms with another type of atom in a way that controls how electrons flow through the material.

“My manager told me he didn’t expect me to solve this. But I really wanted the job,” Kim says. “So day and night, I thought, how to solve this? And I always went back to the textbooks.”

Those textbooks reminded him of a fundamental rule: Replacing one atom with another would work well if both atoms were of similar size. This revelation triggered an idea. Perhaps germanium could be doped with a combination of two different atoms with an average atomic size that is similar to germanium’s.

“I came up with this idea, and right after, IBM showed that it worked. I was so amazed,” Kim says. “From that point, research became my passion. I did it because it was just so fun. Singing is not so different from performing research.”

As promised, he was hired as a postdoc and soon after, promoted to research staff member — a title he carried, literally, with pride.

“I was feeling so happy to be there,” Kim says. “I even wore my IBM badge to restaurants, and everywhere I went.”

Throughout his time at IBM, he learned to focus on research that directly impacts everyday human life, and how to apply the fundamentals to develop next-generation products.

“IBM really raised me up as an engineer who can identify the problems in an industry and find creative solutions to tackle the challenges,” he says.

Cycle of life

And yet, Kim felt he could do more. He was working on boundary-pushing research at one of the leading innovation hubs in the country, where “out-of-the-box” thinking was encouraged, and experimentally tested. But he wanted to explore beyond the company’s research portfolio, and also, find a way to pursue research not just as a profession but as a passion.

“My experience taught me that you can lead a very happy life as an engineer or scientist if your research becomes your hobby,” Kim says. “I wanted to teach this cycle — of happiness, research, and passion — to young people and help PhD students develop like artists or singers.”

In 2015, he packed his bags for MIT, where he accepted a junior faculty position in the Department of Mechanical Engineering. His first impressions upon arriving at the Institute?

“Freedom,” Kim says. “For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things.”

Since he’s put down roots on campus, he has built up a highly productive research group, focused on fabricating ultra-thin, stackable, high-performance electronic materials and devices, which Kim envisions could be used to build hybrid electronic systems as small as a fingernail and as powerful as a supercomputer. He credits the group’s many innovations to the more than 40 students, postdocs, and research scientists who have contributed to his lab.

“I hope this is where they can learn that research can be an art,” Kim says. “To students especially, I hope they see that, if they enjoy what they do, then they can be whatever they want to be.”

© Photo: Jake Belcher

“For me, free thinking — to compose music, innovate something totally new — is the most important thing. And the people at MIT are very talented and curious of all the things,” says Jeehwan Kim.

Quantum repeaters use defects in diamond to interconnect quantum systems

The popular children's game of telephone is based on a simple premise: The starting player whispers a message into the ear of the next player. That second player then passes along the message to the third person and so on until the message reaches the final recipient, who relays it to the group aloud. Often, what the first person said and the last person heard are laughably different; the information gets garbled along the chain.

Such transmission errors from start to end point are also common in the quantum world. As quantum information bits, or qubits (the analogs of classical bits in traditional digital electronics), make their way over a channel, their quantum states can degrade or be lost entirely. Such decoherence is especially common over longer and longer distances because qubits — whether existing as particles of light (photons), electrons, atoms, or other forms — are inherently fragile, governed by the laws of quantum physics, or the physics of very small objects. At this tiny scale (nanoscale), even slight interactions with their environment can cause qubits to lose their quantum properties and alter the information they store. Like the game of telephone, the original and received messages may not be the same.

"One of the big challenges in quantum networking is how to effectively move these delicate quantum states between multiple quantum systems," says Scott Hamilton, leader of MIT Lincoln Laboratory's Optical and Quantum Communications Technology Group, part of the Communications Systems R&D area. "That's a question we're actively exploring in our group."

As Hamilton explains, today's quantum computing chips contain on the order of 100 qubits. But thousands, if not billions, of qubits are required to make a fully functioning quantum computer, which promises to unlock unprecedented computational power for applications ranging from artificial intelligence and cybersecurity to health care and manufacturing. Interconnecting the chips to make one big computer may provide a viable path forward. On the sensing front, connecting quantum sensors to share quantum information may enable new capabilities and performance gains beyond those of an individual sensor. For example, a shared quantum reference between multiple sensors could be used to more precisely locate radio-frequency emission sources. Space and defense agencies are also interested in interconnecting quantum sensors separated by long ranges for satellite-based position, navigation, and timing systems or atomic clock networks between satellites. For communications, quantum satellites could be used as part of a quantum network architecture connecting local ground-based stations, creating a truly global quantum internet.

However, quantum systems can't be interconnected with existing technology. The communication systems used today to transmit information across a network and connect devices rely on detectors that measure bits and amplifiers that copy bits. These technologies do not work in a quantum network because qubits cannot be measured or copied without destroying the quantum state; qubits exist in a superposition of states between zero and one, as opposed to classical bits, which are in a set state of either zero (off) or one (on). Therefore, researchers have been trying to develop the quantum equivalents of classical amplifiers to overcome transmission and interconnection loss. These equivalents are known as quantum repeaters, and they work similarly in concept to amplifiers, dividing the transmission distance into smaller, more manageable segments to lessen losses.

"Quantum repeaters are a critical technology for quantum networks to successfully send information over lossy links," Hamilton says. "But nobody has made a fully functional quantum repeater yet."

The complexity lies in how quantum repeaters operate. Rather than employing a simple "copy and paste," as classical repeaters do, quantum repeaters work by leveraging a strange quantum phenomenon called entanglement. In quantum entanglement, two particles become strongly connected and correlated across space, no matter the distance between them. If you know the state of one particle in an entangled pair, then you automatically know the state of the other. Entangled qubits can serve as a resource for quantum teleportation, in which quantum information is sent between distant systems without moving actual particles; the information vanishes at one location and reappears at another. Teleportation skips the physical journey along fiber-optic cables and therefore eliminates the associated risk of information loss. Quantum repeaters are what tie everything together: they enable the end-to-end generation of quantum entanglement, and, ultimately, with quantum teleportation, the end-to-end transmission of qubits.

Ben Dixon, a researcher in the Optical and Quantum Communications Technology Group, explains how the process works: "First, you need to generate pairs of specific entangled qubits (called Bell states) and transmit them in different directions across the network link to two separate quantum repeaters, which capture and store these qubits. One of the quantum repeaters then does a two-qubit measurement between the transmitted and stored qubit and an arbitrary qubit that we want to send across the link in order to interconnect the remote quantum systems. The measurement results are communicated to the quantum repeater at the other end of the link; the repeater uses these results to turn the stored Bell state qubit into the arbitrary qubit. Lastly, the repeater can send the arbitrary qubit into the quantum system, thereby linking the two remote quantum systems."

To retain the entangled states, the quantum repeater needs a way to store them — in essence, a memory. In 2020, collaborators at Harvard University demonstrated holding a qubit in a single silicon atom (trapped between two empty spaces left behind by removing two carbon atoms) in diamond. This silicon "vacancy" center in diamond is an attractive quantum memory option. Like other individual electrons, the outermost (valence) electron on the silicon atom can point either up or down, similar to a bar magnet with north and south poles. The direction that the electron points is known as its spin, and the two possible spin states, spin up or spin down, are akin to the ones and zeros used by computers to represent, process, and store information. Moreover, silicon's valence electron can be manipulated with visible light to transfer and store a photonic qubit in the electron spin state. The Harvard researchers did exactly this; they patterned an optical waveguide (a structure that guides light in a desired direction) surrounded by a nanophotonic optical cavity to have a photon strongly interact with the silicon atom and impart its quantum state onto that atom. Collaborators at MIT then showed this basic functionality could work with multiple waveguides; they patterned eight waveguides and successfully generated silicon vacancies inside them all. 

Lincoln Laboratory has since been applying quantum engineering to create a quantum memory module equipped with additional capabilities to operate as a quantum repeater. This engineering effort includes on-site custom diamond growth (with the Quantum Information and Integrated Nanosystems Group); the development of a scalable silicon-nanophotonics interposer (a chip that merges photonic and electronic functionalities) to control the silicon-vacancy qubit; and integration and packaging of the components into a system that can be cooled to the cryogenic temperatures needed for long-term memory storage. The current system has two memory modules, each capable of holding eight optical qubits.

To test the technologies, the team has been leveraging an optical-fiber test bed leased by the laboratory. This test bed features a 50-kilometer-long telecommunications network fiber currently connecting three nodes: Lincoln Laboratory to MIT campus and MIT campus to Harvard. Local industrial partners can also tap into this fiber as part of the Boston-Area Quantum Network (BARQNET).

"Our goal is to take state-of-the-art research done by our academic partners and transform it into something we can bring outside the lab to test over real channels with real loss," Hamilton says. "All of this infrastructure is critical for doing baseline experiments to get entanglement onto a fiber system and move it between various parties."

Using this test bed, the team, in collaboration with MIT and Harvard researchers, became the first in the world to demonstrate a quantum interaction with a nanophotonic quantum memory across a deployed telecommunications fiber. With the quantum repeater located at Harvard, they sent photons encoded with quantum states from the laboratory, across the fiber, and interfaced them with the silicon-vacancy quantum memory that captured and stored the transmitted quantum states. They measured the electron on the silicon atom to determine how well the quantum states were transferred to the silicon atom's spin-up or spin-down position.

"We looked at our test bed performance for the relevant quantum repeater metrics of distance, efficiency (loss error), fidelity, and scalability and found that we achieved best or near-best for all these metrics, compared to other leading efforts around the world," Dixon says. "Our distance is longer than anybody else has shown; our efficiency is decent, and we think we can further improve it by optimizing some of our test bed components; the read-out qubit from memory matches the qubit we sent with 87.5 percent fidelity; and diamond has an inherent lithographic patterning scalability in which you can imagine putting thousands of qubits onto one small chip." 

The Lincoln Laboratory team is now focusing on combining multiple quantum memories at each node and incorporating additional nodes into the quantum network test bed. Such advances will enable the team to explore quantum networking protocols at a system level. They also look forward to materials science investigations that their Harvard and MIT collaborators are pursuing. These investigations may identify other types of atoms in diamond capable of operating at slightly warmer temperatures for more practical operation.

The nanophotonic quantum memory module was recognized with a 2023 R&D 100 Award.

© Photo: Glen Cooper

A packaged prototype quantum repeater module (center), mounted on a gold-plated copper assembly and connected to printed circuit boards (green), features eight optical memories that store qubits in a silicon atom in diamond.

Best smart thermostats in 2024

2. Březen 2024 v 15:01

Smart thermostats are more popular and effective than ever. Buying and installing one might seem like a complex undertaking on the surface, but it's worth it for one of the most useful smart devices you can add to a home.

Quantum repeaters use defects in diamond to interconnect quantum systems

The popular children's game of telephone is based on a simple premise: The starting player whispers a message into the ear of the next player. That second player then passes along the message to the third person and so on until the message reaches the final recipient, who relays it to the group aloud. Often, what the first person said and the last person heard are laughably different; the information gets garbled along the chain.

Such transmission errors from start to end point are also common in the quantum world. As quantum information bits, or qubits (the analogs of classical bits in traditional digital electronics), make their way over a channel, their quantum states can degrade or be lost entirely. Such decoherence is especially common over longer and longer distances because qubits — whether existing as particles of light (photons), electrons, atoms, or other forms — are inherently fragile, governed by the laws of quantum physics, or the physics of very small objects. At this tiny scale (nanoscale), even slight interactions with their environment can cause qubits to lose their quantum properties and alter the information they store. Like the game of telephone, the original and received messages may not be the same.

"One of the big challenges in quantum networking is how to effectively move these delicate quantum states between multiple quantum systems," says Scott Hamilton, leader of MIT Lincoln Laboratory's Optical and Quantum Communications Technology Group, part of the Communications Systems R&D area. "That's a question we're actively exploring in our group."

As Hamilton explains, today's quantum computing chips contain on the order of 100 qubits. But thousands, if not billions, of qubits are required to make a fully functioning quantum computer, which promises to unlock unprecedented computational power for applications ranging from artificial intelligence and cybersecurity to health care and manufacturing. Interconnecting the chips to make one big computer may provide a viable path forward. On the sensing front, connecting quantum sensors to share quantum information may enable new capabilities and performance gains beyond those of an individual sensor. For example, a shared quantum reference between multiple sensors could be used to more precisely locate radio-frequency emission sources. Space and defense agencies are also interested in interconnecting quantum sensors separated by long ranges for satellite-based position, navigation, and timing systems or atomic clock networks between satellites. For communications, quantum satellites could be used as part of a quantum network architecture connecting local ground-based stations, creating a truly global quantum internet.

However, quantum systems can't be interconnected with existing technology. The communication systems used today to transmit information across a network and connect devices rely on detectors that measure bits and amplifiers that copy bits. These technologies do not work in a quantum network because qubits cannot be measured or copied without destroying the quantum state; qubits exist in a superposition of states between zero and one, as opposed to classical bits, which are in a set state of either zero (off) or one (on). Therefore, researchers have been trying to develop the quantum equivalents of classical amplifiers to overcome transmission and interconnection loss. These equivalents are known as quantum repeaters, and they work similarly in concept to amplifiers, dividing the transmission distance into smaller, more manageable segments to lessen losses.

"Quantum repeaters are a critical technology for quantum networks to successfully send information over lossy links," Hamilton says. "But nobody has made a fully functional quantum repeater yet."

The complexity lies in how quantum repeaters operate. Rather than employing a simple "copy and paste," as classical repeaters do, quantum repeaters work by leveraging a strange quantum phenomenon called entanglement. In quantum entanglement, two particles become strongly connected and correlated across space, no matter the distance between them. If you know the state of one particle in an entangled pair, then you automatically know the state of the other. Entangled qubits can serve as a resource for quantum teleportation, in which quantum information is sent between distant systems without moving actual particles; the information vanishes at one location and reappears at another. Teleportation skips the physical journey along fiber-optic cables and therefore eliminates the associated risk of information loss. Quantum repeaters are what tie everything together: they enable the end-to-end generation of quantum entanglement, and, ultimately, with quantum teleportation, the end-to-end transmission of qubits.

Ben Dixon, a researcher in the Optical and Quantum Communications Technology Group, explains how the process works: "First, you need to generate pairs of specific entangled qubits (called Bell states) and transmit them in different directions across the network link to two separate quantum repeaters, which capture and store these qubits. One of the quantum repeaters then does a two-qubit measurement between the transmitted and stored qubit and an arbitrary qubit that we want to send across the link in order to interconnect the remote quantum systems. The measurement results are communicated to the quantum repeater at the other end of the link; the repeater uses these results to turn the stored Bell state qubit into the arbitrary qubit. Lastly, the repeater can send the arbitrary qubit into the quantum system, thereby linking the two remote quantum systems."

To retain the entangled states, the quantum repeater needs a way to store them — in essence, a memory. In 2020, collaborators at Harvard University demonstrated holding a qubit in a single silicon atom (trapped between two empty spaces left behind by removing two carbon atoms) in diamond. This silicon "vacancy" center in diamond is an attractive quantum memory option. Like other individual electrons, the outermost (valence) electron on the silicon atom can point either up or down, similar to a bar magnet with north and south poles. The direction that the electron points is known as its spin, and the two possible spin states, spin up or spin down, are akin to the ones and zeros used by computers to represent, process, and store information. Moreover, silicon's valence electron can be manipulated with visible light to transfer and store a photonic qubit in the electron spin state. The Harvard researchers did exactly this; they patterned an optical waveguide (a structure that guides light in a desired direction) surrounded by a nanophotonic optical cavity to have a photon strongly interact with the silicon atom and impart its quantum state onto that atom. Collaborators at MIT then showed this basic functionality could work with multiple waveguides; they patterned eight waveguides and successfully generated silicon vacancies inside them all. 

Lincoln Laboratory has since been applying quantum engineering to create a quantum memory module equipped with additional capabilities to operate as a quantum repeater. This engineering effort includes on-site custom diamond growth (with the Quantum Information and Integrated Nanosystems Group); the development of a scalable silicon-nanophotonics interposer (a chip that merges photonic and electronic functionalities) to control the silicon-vacancy qubit; and integration and packaging of the components into a system that can be cooled to the cryogenic temperatures needed for long-term memory storage. The current system has two memory modules, each capable of holding eight optical qubits.

To test the technologies, the team has been leveraging an optical-fiber test bed leased by the laboratory. This test bed features a 50-kilometer-long telecommunications network fiber currently connecting three nodes: Lincoln Laboratory to MIT campus and MIT campus to Harvard. Local industrial partners can also tap into this fiber as part of the Boston-Area Quantum Network (BARQNET).

"Our goal is to take state-of-the-art research done by our academic partners and transform it into something we can bring outside the lab to test over real channels with real loss," Hamilton says. "All of this infrastructure is critical for doing baseline experiments to get entanglement onto a fiber system and move it between various parties."

Using this test bed, the team, in collaboration with MIT and Harvard researchers, became the first in the world to demonstrate a quantum interaction with a nanophotonic quantum memory across a deployed telecommunications fiber. With the quantum repeater located at Harvard, they sent photons encoded with quantum states from the laboratory, across the fiber, and interfaced them with the silicon-vacancy quantum memory that captured and stored the transmitted quantum states. They measured the electron on the silicon atom to determine how well the quantum states were transferred to the silicon atom's spin-up or spin-down position.

"We looked at our test bed performance for the relevant quantum repeater metrics of distance, efficiency (loss error), fidelity, and scalability and found that we achieved best or near-best for all these metrics, compared to other leading efforts around the world," Dixon says. "Our distance is longer than anybody else has shown; our efficiency is decent, and we think we can further improve it by optimizing some of our test bed components; the read-out qubit from memory matches the qubit we sent with 87.5 percent fidelity; and diamond has an inherent lithographic patterning scalability in which you can imagine putting thousands of qubits onto one small chip." 

The Lincoln Laboratory team is now focusing on combining multiple quantum memories at each node and incorporating additional nodes into the quantum network test bed. Such advances will enable the team to explore quantum networking protocols at a system level. They also look forward to materials science investigations that their Harvard and MIT collaborators are pursuing. These investigations may identify other types of atoms in diamond capable of operating at slightly warmer temperatures for more practical operation.

The nanophotonic quantum memory module was recognized with a 2023 R&D 100 Award.

© Photo: Glen Cooper

A packaged prototype quantum repeater module (center), mounted on a gold-plated copper assembly and connected to printed circuit boards (green), features eight optical memories that store qubits in a silicon atom in diamond.

Quantum repeaters use defects in diamond to interconnect quantum systems

The popular children's game of telephone is based on a simple premise: The starting player whispers a message into the ear of the next player. That second player then passes along the message to the third person and so on until the message reaches the final recipient, who relays it to the group aloud. Often, what the first person said and the last person heard are laughably different; the information gets garbled along the chain.

Such transmission errors from start to end point are also common in the quantum world. As quantum information bits, or qubits (the analogs of classical bits in traditional digital electronics), make their way over a channel, their quantum states can degrade or be lost entirely. Such decoherence is especially common over longer and longer distances because qubits — whether existing as particles of light (photons), electrons, atoms, or other forms — are inherently fragile, governed by the laws of quantum physics, or the physics of very small objects. At this tiny scale (nanoscale), even slight interactions with their environment can cause qubits to lose their quantum properties and alter the information they store. Like the game of telephone, the original and received messages may not be the same.

"One of the big challenges in quantum networking is how to effectively move these delicate quantum states between multiple quantum systems," says Scott Hamilton, leader of MIT Lincoln Laboratory's Optical and Quantum Communications Technology Group, part of the Communications Systems R&D area. "That's a question we're actively exploring in our group."

As Hamilton explains, today's quantum computing chips contain on the order of 100 qubits. But thousands, if not billions, of qubits are required to make a fully functioning quantum computer, which promises to unlock unprecedented computational power for applications ranging from artificial intelligence and cybersecurity to health care and manufacturing. Interconnecting the chips to make one big computer may provide a viable path forward. On the sensing front, connecting quantum sensors to share quantum information may enable new capabilities and performance gains beyond those of an individual sensor. For example, a shared quantum reference between multiple sensors could be used to more precisely locate radio-frequency emission sources. Space and defense agencies are also interested in interconnecting quantum sensors separated by long ranges for satellite-based position, navigation, and timing systems or atomic clock networks between satellites. For communications, quantum satellites could be used as part of a quantum network architecture connecting local ground-based stations, creating a truly global quantum internet.

However, quantum systems can't be interconnected with existing technology. The communication systems used today to transmit information across a network and connect devices rely on detectors that measure bits and amplifiers that copy bits. These technologies do not work in a quantum network because qubits cannot be measured or copied without destroying the quantum state; qubits exist in a superposition of states between zero and one, as opposed to classical bits, which are in a set state of either zero (off) or one (on). Therefore, researchers have been trying to develop the quantum equivalents of classical amplifiers to overcome transmission and interconnection loss. These equivalents are known as quantum repeaters, and they work similarly in concept to amplifiers, dividing the transmission distance into smaller, more manageable segments to lessen losses.

"Quantum repeaters are a critical technology for quantum networks to successfully send information over lossy links," Hamilton says. "But nobody has made a fully functional quantum repeater yet."

The complexity lies in how quantum repeaters operate. Rather than employing a simple "copy and paste," as classical repeaters do, quantum repeaters work by leveraging a strange quantum phenomenon called entanglement. In quantum entanglement, two particles become strongly connected and correlated across space, no matter the distance between them. If you know the state of one particle in an entangled pair, then you automatically know the state of the other. Entangled qubits can serve as a resource for quantum teleportation, in which quantum information is sent between distant systems without moving actual particles; the information vanishes at one location and reappears at another. Teleportation skips the physical journey along fiber-optic cables and therefore eliminates the associated risk of information loss. Quantum repeaters are what tie everything together: they enable the end-to-end generation of quantum entanglement, and, ultimately, with quantum teleportation, the end-to-end transmission of qubits.

Ben Dixon, a researcher in the Optical and Quantum Communications Technology Group, explains how the process works: "First, you need to generate pairs of specific entangled qubits (called Bell states) and transmit them in different directions across the network link to two separate quantum repeaters, which capture and store these qubits. One of the quantum repeaters then does a two-qubit measurement between the transmitted and stored qubit and an arbitrary qubit that we want to send across the link in order to interconnect the remote quantum systems. The measurement results are communicated to the quantum repeater at the other end of the link; the repeater uses these results to turn the stored Bell state qubit into the arbitrary qubit. Lastly, the repeater can send the arbitrary qubit into the quantum system, thereby linking the two remote quantum systems."

To retain the entangled states, the quantum repeater needs a way to store them — in essence, a memory. In 2020, collaborators at Harvard University demonstrated holding a qubit in a single silicon atom (trapped between two empty spaces left behind by removing two carbon atoms) in diamond. This silicon "vacancy" center in diamond is an attractive quantum memory option. Like other individual electrons, the outermost (valence) electron on the silicon atom can point either up or down, similar to a bar magnet with north and south poles. The direction that the electron points is known as its spin, and the two possible spin states, spin up or spin down, are akin to the ones and zeros used by computers to represent, process, and store information. Moreover, silicon's valence electron can be manipulated with visible light to transfer and store a photonic qubit in the electron spin state. The Harvard researchers did exactly this; they patterned an optical waveguide (a structure that guides light in a desired direction) surrounded by a nanophotonic optical cavity to have a photon strongly interact with the silicon atom and impart its quantum state onto that atom. Collaborators at MIT then showed this basic functionality could work with multiple waveguides; they patterned eight waveguides and successfully generated silicon vacancies inside them all. 

Lincoln Laboratory has since been applying quantum engineering to create a quantum memory module equipped with additional capabilities to operate as a quantum repeater. This engineering effort includes on-site custom diamond growth (with the Quantum Information and Integrated Nanosystems Group); the development of a scalable silicon-nanophotonics interposer (a chip that merges photonic and electronic functionalities) to control the silicon-vacancy qubit; and integration and packaging of the components into a system that can be cooled to the cryogenic temperatures needed for long-term memory storage. The current system has two memory modules, each capable of holding eight optical qubits.

To test the technologies, the team has been leveraging an optical-fiber test bed leased by the laboratory. This test bed features a 50-kilometer-long telecommunications network fiber currently connecting three nodes: Lincoln Laboratory to MIT campus and MIT campus to Harvard. Local industrial partners can also tap into this fiber as part of the Boston-Area Quantum Network (BARQNET).

"Our goal is to take state-of-the-art research done by our academic partners and transform it into something we can bring outside the lab to test over real channels with real loss," Hamilton says. "All of this infrastructure is critical for doing baseline experiments to get entanglement onto a fiber system and move it between various parties."

Using this test bed, the team, in collaboration with MIT and Harvard researchers, became the first in the world to demonstrate a quantum interaction with a nanophotonic quantum memory across a deployed telecommunications fiber. With the quantum repeater located at Harvard, they sent photons encoded with quantum states from the laboratory, across the fiber, and interfaced them with the silicon-vacancy quantum memory that captured and stored the transmitted quantum states. They measured the electron on the silicon atom to determine how well the quantum states were transferred to the silicon atom's spin-up or spin-down position.

"We looked at our test bed performance for the relevant quantum repeater metrics of distance, efficiency (loss error), fidelity, and scalability and found that we achieved best or near-best for all these metrics, compared to other leading efforts around the world," Dixon says. "Our distance is longer than anybody else has shown; our efficiency is decent, and we think we can further improve it by optimizing some of our test bed components; the read-out qubit from memory matches the qubit we sent with 87.5 percent fidelity; and diamond has an inherent lithographic patterning scalability in which you can imagine putting thousands of qubits onto one small chip." 

The Lincoln Laboratory team is now focusing on combining multiple quantum memories at each node and incorporating additional nodes into the quantum network test bed. Such advances will enable the team to explore quantum networking protocols at a system level. They also look forward to materials science investigations that their Harvard and MIT collaborators are pursuing. These investigations may identify other types of atoms in diamond capable of operating at slightly warmer temperatures for more practical operation.

The nanophotonic quantum memory module was recognized with a 2023 R&D 100 Award.

© Photo: Glen Cooper

A packaged prototype quantum repeater module (center), mounted on a gold-plated copper assembly and connected to printed circuit boards (green), features eight optical memories that store qubits in a silicon atom in diamond.

Quantum repeaters use defects in diamond to interconnect quantum systems

The popular children's game of telephone is based on a simple premise: The starting player whispers a message into the ear of the next player. That second player then passes along the message to the third person and so on until the message reaches the final recipient, who relays it to the group aloud. Often, what the first person said and the last person heard are laughably different; the information gets garbled along the chain.

Such transmission errors from start to end point are also common in the quantum world. As quantum information bits, or qubits (the analogs of classical bits in traditional digital electronics), make their way over a channel, their quantum states can degrade or be lost entirely. Such decoherence is especially common over longer and longer distances because qubits — whether existing as particles of light (photons), electrons, atoms, or other forms — are inherently fragile, governed by the laws of quantum physics, or the physics of very small objects. At this tiny scale (nanoscale), even slight interactions with their environment can cause qubits to lose their quantum properties and alter the information they store. Like the game of telephone, the original and received messages may not be the same.

"One of the big challenges in quantum networking is how to effectively move these delicate quantum states between multiple quantum systems," says Scott Hamilton, leader of MIT Lincoln Laboratory's Optical and Quantum Communications Technology Group, part of the Communications Systems R&D area. "That's a question we're actively exploring in our group."

As Hamilton explains, today's quantum computing chips contain on the order of 100 qubits. But thousands, if not billions, of qubits are required to make a fully functioning quantum computer, which promises to unlock unprecedented computational power for applications ranging from artificial intelligence and cybersecurity to health care and manufacturing. Interconnecting the chips to make one big computer may provide a viable path forward. On the sensing front, connecting quantum sensors to share quantum information may enable new capabilities and performance gains beyond those of an individual sensor. For example, a shared quantum reference between multiple sensors could be used to more precisely locate radio-frequency emission sources. Space and defense agencies are also interested in interconnecting quantum sensors separated by long ranges for satellite-based position, navigation, and timing systems or atomic clock networks between satellites. For communications, quantum satellites could be used as part of a quantum network architecture connecting local ground-based stations, creating a truly global quantum internet.

However, quantum systems can't be interconnected with existing technology. The communication systems used today to transmit information across a network and connect devices rely on detectors that measure bits and amplifiers that copy bits. These technologies do not work in a quantum network because qubits cannot be measured or copied without destroying the quantum state; qubits exist in a superposition of states between zero and one, as opposed to classical bits, which are in a set state of either zero (off) or one (on). Therefore, researchers have been trying to develop the quantum equivalents of classical amplifiers to overcome transmission and interconnection loss. These equivalents are known as quantum repeaters, and they work similarly in concept to amplifiers, dividing the transmission distance into smaller, more manageable segments to lessen losses.

"Quantum repeaters are a critical technology for quantum networks to successfully send information over lossy links," Hamilton says. "But nobody has made a fully functional quantum repeater yet."

The complexity lies in how quantum repeaters operate. Rather than employing a simple "copy and paste," as classical repeaters do, quantum repeaters work by leveraging a strange quantum phenomenon called entanglement. In quantum entanglement, two particles become strongly connected and correlated across space, no matter the distance between them. If you know the state of one particle in an entangled pair, then you automatically know the state of the other. Entangled qubits can serve as a resource for quantum teleportation, in which quantum information is sent between distant systems without moving actual particles; the information vanishes at one location and reappears at another. Teleportation skips the physical journey along fiber-optic cables and therefore eliminates the associated risk of information loss. Quantum repeaters are what tie everything together: they enable the end-to-end generation of quantum entanglement, and, ultimately, with quantum teleportation, the end-to-end transmission of qubits.

Ben Dixon, a researcher in the Optical and Quantum Communications Technology Group, explains how the process works: "First, you need to generate pairs of specific entangled qubits (called Bell states) and transmit them in different directions across the network link to two separate quantum repeaters, which capture and store these qubits. One of the quantum repeaters then does a two-qubit measurement between the transmitted and stored qubit and an arbitrary qubit that we want to send across the link in order to interconnect the remote quantum systems. The measurement results are communicated to the quantum repeater at the other end of the link; the repeater uses these results to turn the stored Bell state qubit into the arbitrary qubit. Lastly, the repeater can send the arbitrary qubit into the quantum system, thereby linking the two remote quantum systems."

To retain the entangled states, the quantum repeater needs a way to store them — in essence, a memory. In 2020, collaborators at Harvard University demonstrated holding a qubit in a single silicon atom (trapped between two empty spaces left behind by removing two carbon atoms) in diamond. This silicon "vacancy" center in diamond is an attractive quantum memory option. Like other individual electrons, the outermost (valence) electron on the silicon atom can point either up or down, similar to a bar magnet with north and south poles. The direction that the electron points is known as its spin, and the two possible spin states, spin up or spin down, are akin to the ones and zeros used by computers to represent, process, and store information. Moreover, silicon's valence electron can be manipulated with visible light to transfer and store a photonic qubit in the electron spin state. The Harvard researchers did exactly this; they patterned an optical waveguide (a structure that guides light in a desired direction) surrounded by a nanophotonic optical cavity to have a photon strongly interact with the silicon atom and impart its quantum state onto that atom. Collaborators at MIT then showed this basic functionality could work with multiple waveguides; they patterned eight waveguides and successfully generated silicon vacancies inside them all. 

Lincoln Laboratory has since been applying quantum engineering to create a quantum memory module equipped with additional capabilities to operate as a quantum repeater. This engineering effort includes on-site custom diamond growth (with the Quantum Information and Integrated Nanosystems Group); the development of a scalable silicon-nanophotonics interposer (a chip that merges photonic and electronic functionalities) to control the silicon-vacancy qubit; and integration and packaging of the components into a system that can be cooled to the cryogenic temperatures needed for long-term memory storage. The current system has two memory modules, each capable of holding eight optical qubits.

To test the technologies, the team has been leveraging an optical-fiber test bed leased by the laboratory. This test bed features a 50-kilometer-long telecommunications network fiber currently connecting three nodes: Lincoln Laboratory to MIT campus and MIT campus to Harvard. Local industrial partners can also tap into this fiber as part of the Boston-Area Quantum Network (BARQNET).

"Our goal is to take state-of-the-art research done by our academic partners and transform it into something we can bring outside the lab to test over real channels with real loss," Hamilton says. "All of this infrastructure is critical for doing baseline experiments to get entanglement onto a fiber system and move it between various parties."

Using this test bed, the team, in collaboration with MIT and Harvard researchers, became the first in the world to demonstrate a quantum interaction with a nanophotonic quantum memory across a deployed telecommunications fiber. With the quantum repeater located at Harvard, they sent photons encoded with quantum states from the laboratory, across the fiber, and interfaced them with the silicon-vacancy quantum memory that captured and stored the transmitted quantum states. They measured the electron on the silicon atom to determine how well the quantum states were transferred to the silicon atom's spin-up or spin-down position.

"We looked at our test bed performance for the relevant quantum repeater metrics of distance, efficiency (loss error), fidelity, and scalability and found that we achieved best or near-best for all these metrics, compared to other leading efforts around the world," Dixon says. "Our distance is longer than anybody else has shown; our efficiency is decent, and we think we can further improve it by optimizing some of our test bed components; the read-out qubit from memory matches the qubit we sent with 87.5 percent fidelity; and diamond has an inherent lithographic patterning scalability in which you can imagine putting thousands of qubits onto one small chip." 

The Lincoln Laboratory team is now focusing on combining multiple quantum memories at each node and incorporating additional nodes into the quantum network test bed. Such advances will enable the team to explore quantum networking protocols at a system level. They also look forward to materials science investigations that their Harvard and MIT collaborators are pursuing. These investigations may identify other types of atoms in diamond capable of operating at slightly warmer temperatures for more practical operation.

The nanophotonic quantum memory module was recognized with a 2023 R&D 100 Award.

© Photo: Glen Cooper

A packaged prototype quantum repeater module (center), mounted on a gold-plated copper assembly and connected to printed circuit boards (green), features eight optical memories that store qubits in a silicon atom in diamond.
❌
❌