FreshRSS

Normální zobrazení

Jsou dostupné nové články, klikněte pro obnovení stránky.
PředevčíremHlavní kanál
  • ✇Semiconductor Engineering
  • Chip Industry Week In ReviewThe SE Staff
    BAE Systems and GlobalFoundries are teaming up to strengthen the supply of chips for national security programs, aligning technology roadmaps and collaborating on innovation and manufacturing. Focus areas include advanced packaging, GaN-on-silicon chips, silicon photonics, and advanced technology process development. Onsemi plans to build a $2 billion silicon carbide production plant in the Czech Republic. The site would produce smart power semiconductors for electric vehicles, renewable energy
     

Chip Industry Week In Review

21. Červen 2024 v 09:01

BAE Systems and GlobalFoundries are teaming up to strengthen the supply of chips for national security programs, aligning technology roadmaps and collaborating on innovation and manufacturing. Focus areas include advanced packaging, GaN-on-silicon chips, silicon photonics, and advanced technology process development.

Onsemi plans to build a $2 billion silicon carbide production plant in the Czech Republic. The site would produce smart power semiconductors for electric vehicles, renewable energy technology, and data centers.

The global chip manufacturing industry is projected to boost capacity by 6% in 2024 and 7% in 2025, reaching 33.7 million 8-inch (200mm) wafers per month, according to SEMIs latest World Fab Forecast report. Leading-edge capacity for 5nm nodes and below is expected to grow by 13% in 2024, driven by AI demand for data center applications. Additionally, Intel, Samsung, and TSMC will begin producing 2nm chips using gate-all-around (GAA) FETs next year, boosting leading-edge capacity by 17% in 2025.

At the IEEE Symposium on VLSI Technology & Circuits, imec introduced:

  • Functional CMOS-based CFETs with stacked bottom and top source/drain contacts.
  • CMOS-based 56Gb/s zero-IF D-band beamforming transmitters to support next-gen short-range, high-speed wireless services at frequencies above 100GHz.
  • ADCs for base stations and handsets, a key step toward scalable, high-performance beyond-5G solutions, such as cloud-based AI and extended reality apps.

Quick links to more news:

Global
In-Depth
Market Reports
Education and Training
Security
Product News
Research
Events and Further Reading


Global

Wolfspeed postponed plans to construct a $3 billion chip plant in Germany, underscoring the EU‘s challenges in boosting semiconductor production, reports Reuters. The North Carolina-based company cited reduced capital spending due to a weakened EV market, saying it now aims to start construction in mid-2025, two years later than 0riginally planned.

Micron is building a pilot production line for high-bandwidth memory (HBM) in the U.S., and considering HBM production in Malaysia to meet growing AI demand, according to a Nikkei report. The company is expanding HBM R&D facilities in Boise, Idaho, and eyeing production capacity in Malaysia, while also enhancing its largest HBM facility in Taichung, Taiwan.

Kioxia restored its Yokkaichi and Kitakami plants in Japan to full capacity, ending production cuts as the memory market recovers, according to Nikkei. The company, which is focusing on NAND flash production, has secured new bank credit support, including refinancing a ¥540 billion loan and establishing a ¥210 billion credit line. Kioxia had reduced output by more than 30% in October 2022 due to weak smartphone demand.

Europe’s NATO Innovation Fund announced its first direct investments, which includes semiconductor materials. Twenty-three NATO allies co-invested in this over $1B fund devoted to address critical defense and security challenges.

The second meeting of the U.S.India Initiative on Critical and Emerging Technology (iCET) was held in New Delhi, with various funding and initiatives announced to support semiconductor technology, next-gen telecommunications, connected and autonomous vehicles, ML, and more.

Amazon announced investments of €10 billion in Germany to drive innovation and support the expansion of its logistics network and cloud infrastructure.

Quantum Machines opened the Israeli Quantum Computing Center (IQCC) research facility, backed by the Israel Innovation Authority and located at Tel Aviv University. Also, Israel-based Classiq is collaborating with NVIDIA and BMW, using quantum computing to find the optimal automotive architecture of electrical and mechanical systems.

Global data center vacancy rates are at historic lows, and power availability is becoming less available, according to a Siemens report featured on Broadband Breakfast. The company called for an influx of financing to find new ways to optimize data center technology and sustainability.


In-Depth

Semiconductor Engineering published its Manufacturing, Packaging & Materials newsletter this week, featuring these top stories:

More reporting this week:


Market Reports

Renesas completed its acquisition of Transphorm and will immediately start offering GaN-based power products and reference designs to meet the demand for wide-bandgap (WBG) chips.

Revenues for the top five wafer fab equipment (WFE) companies fell 9% YoY in Q1 2024, according to Counterpoint. This was offset partially by increased demand for NAND and DRAM, which increased 33% YoY, and strong growth in sales to China, which were up 116% YoY.

The SiC power devices industry saw robust growth in 2023, primarily driven by the BEV market, according to TrendForce. The top five suppliers, led by ST with a 32.6% market share and onsemi in second place, accounted for 91.9% of total revenue. However, the anticipated slowdown in BEV sales and weakening industrial demand are expected to significantly decelerate revenue growth in 2024. 

About 30% of vehicles produced globally will have E/E architectures with zonal controllers by 2032, according to McKinsey & Co. The market for automotive micro-components and logic semiconductors is predicted to reach $60 billion in 2032, and the overall automotive semiconductor market is expected to grow from $60 billion to $140 billion in the same period, at a 10% CAGR.

The automotive processor market generated US$20 billion in revenue in 2023, according to Yole. US$7.8 billion was from APUs and FPGAs and $12.2 billion was from MCUs. The ADAS and infotainment processors market was worth US$7.8 billion in 2023 and is predicted to grow to $16.4 billion by 2029 at a 13% CAGR. The market for ADAS sensing is expected to grow at a 7% CAGR.


Security

The CHERI Alliance was established to drive adoption of memory safety and scalable software compartmentalization via the security technology CHERI, or Capability Hardware Enhanced RISC Instructions. Founding members include Capabilities Limited, Codasip, the FreeBSD Foundation, lowRISC, SCI Semiconductor, and the University of Cambridge.

In security research:

  • Japan and China researchers explored a NAND-XOR ring oscillator structure to design an entropy source architecture for a true random number generator (TRNG).
  • University of Toronto and Carleton University researchers presented a survey examining how hardware is applied to achieve security and how reported attacks have exploited certain defects in hardware.
  • University of North Texas and Texas Woman’s University researchers explored the potential of hardware security primitive Physical Unclonable Functions (PUF) for mitigation of visual deepfakes.
  • Villanova University researchers proposed the Boolean DERIVativE attack, which generalizes Boolean domain leakage.

Post-quantum cryptography firm PQShield raised $37 million in Series B funding.

Former OpenAI executive, Ilya Sutskever, who quit over safety concerns, launched Safe Superintelligence Inc. (SSI).

EU industry groups warned the European Commission that its proposed cybersecurity certification scheme (EUCS) for cloud services should not discriminate against Amazon, Google, and Microsoft, reported Reuters.

Cyber Europe tested EU cyber preparedness in the energy sector by simulating a series of large-scale cyber incidents in an exercise organized by the European Union Agency for Cybersecurity (ENISA).

The Cybersecurity and Infrastructure Security Agency (CISA) issued a number of alerts/advisories.


Education and Training

New York non-profit NY CREATES and South Korea’s National Nano Fab Center partnered to develop a hub for joint research, aligned technology services, testbed support, and an engineer exchange program to bolster chips-centered R&D, workforce development, and each nation’s high-tech ecosystem.

New York and the Netherlands agreed on a partnership to promote sustainability within the semiconductor industry, enhance workforce development, and boost semiconductor R&D.

Rapidus is set to send 200 engineers to AI chip developer Tenstorrent in the U.S. for training over the next five years, reports Nikkei. This initiative, led by Japan’s Leading-edge Semiconductor Technology Center (LSTC), aims to bolster Japan’s AI chip industry.


Product News

UMC announced its 22nm embedded high voltage (eHV) technology platform for premium smartphone and mobile device displays. The 22eHV platform reduces core device power consumption by up to 30% compared to previous 28nm processes. Die area is reduced by 10% with the industry’s smallest SRAM bit cells.​

Alphawave Semi announced a new 9.2 Gbps HBM3E sub-system silicon platform capable of 1.2 terabytes per second. Based on the HBM3E IP, the sub-system is aimed at addressing the demand for ultra-high-speed connectivity in high-performance compute applications.

Movellus introduced the Aeonic Power product family for on-die voltage regulation, targeting the challenging area of power delivery.

Cadence partnered with Semiwise and sureCore to develop new cryogenic CMOS circuits with possible quantum computing applications. The circuits are based on modified transistors found in the Cadence Spectre Simulation Platform and are capable of processing analog, mixed-signal, and digital circuit simulation and verification at cryogenic temperatures.

Renesas launched R-Car Open Access (RoX), an integrated development platform for software-defined vehicles (SDVs), designed for Renesas R-Car SoCs and MCUs with tools for deployment of AI applications, reducing complexity and saving time and money for car OEMs and Tier 1s.

Infineon released industry-first radiation-hardened 1 and 2 Mb parallel interface ferroelectric-RAM (F-RAM) nonvolatile memory devices, with up to 120 years of data retention at 85-degree Celsius, along with random access and full memory write at bus speeds. Plus, a CoolGaN Transistor 700 V G4 product family for efficient power conversion up to 700 V, ideal for consumer chargers and notebook adapters, data center power supplies, renewable energy inverters, and more.

Ansys adopted NVIDIA’s Omniverse application programming interfaces for its multi-die chip designers. Those APIs will be used for 5G/6G, IoT, AI/ML, cloud computing, and autonomous vehicle applications. The company also announced ConceptEV, an SaaS solution for automotive concept design for EVs.

Fig. 1: Field visualization of 3D-IC with Omniverse. Source: Ansys

QP Technologies announced a new dicing saw for its manufacturing line that can process a full cassette of 300mm wafers 7% faster than existing tools, improving throughput and productivity.

NXP introduced its SAF9xxx of audio DSPs to support the demand for AI-based audio in software-defined vehicles (SDVs) by using Cadence’s Tensilica HiFi 5 DSPs combined with dedicated neural-network engines and hardware-based accelerators.

Avionyx, a provider of software lifecycle engineering in the aerospace and safety-critical systems sector, partnered with Siemens and will leverage its Polarion application lifecycle management (ALM) tool. Also, Dovetail Electric Aviation adopted Siemens Xcelerator to support sustainable aviation.


Research

Researchers from imec and KU Leuven released a +70 page paper “Selecting Alternative Metals for Advanced Interconnects,” addressing interconnect resistance and reliability.

A comprehensive review article — “Future of plasma etching for microelectronics: Challenges and opportunities” — was created by a team of experts from the University of Maryland, Lam Research, IBM, Intel, and many others.

Researchers from the Institut Polytechnique de Paris’s Laboratory of Condensed Matter for Physics developed an approach to investigate defects in semiconductors. The team “determined the spin-dependent electronic structure linked to defects in the arrangement of semiconductor atoms,” the first time this structure has been measured, according to a release.

Lawrence Berkeley National Laboratory-led researchers developed a small enclosed chamber that can hold all the components of an electrochemical reaction, which can be paired with transmission electron microscopy (TEM) to generate precise views of a reaction at atomic scale, and can be frozen to stop the reaction at specific time points. They used the technique to study a copper catalyst.

The Federal Drug Administration (FDA) approved a clinical trial to test a device with 1,024 nanoscale sensors that records brain activity during surgery, developed by engineers at the University of California San Diego (UC San Diego).


Events and Further Reading

Find upcoming chip industry events here, including:

Event Date Location
Standards for Chiplet Design with 3DIC Packaging (Part 2) Jun 21 Online
DAC 2024 Jun 23 – 27 San Francisco
RISC-V Summit Europe 2024 Jun 24 – 28 Munich
Leti Innovation Days 2024 Jun 25 – 27 Grenoble, France
ISCA 2024 Jun 29 – Jul 3 Buenos Aires, Argentina
SEMICON West Jul 9 – 11 San Francisco
Flash Memory Summit Aug 6 – 8 Santa Clara, CA
USENIX Security Symposium Aug 14 – 16 Philadelphia, PA
Hot Chips 2024 Aug 25- 27 Stanford University
Find All Upcoming Events Here

Upcoming webinars are here.

Semiconductor Engineering’s latest newsletters:

Automotive, Security and Pervasive Computing
Systems and Design
Low Power-High Performance
Test, Measurement and Analytics
Manufacturing, Packaging and Materials


The post Chip Industry Week In Review appeared first on Semiconductor Engineering.

  • ✇IEEE Spectrum
  • Powering Planes With Microwaves Is Not the Craziest IdeaIan McKay
    Imagine it’s 2050 and you’re on a cross-country flight on a new type of airliner, one with no fuel on board. The plane takes off, and you rise above the airport. Instead of climbing to cruising altitude, though, your plane levels out and the engines quiet to a low hum. Is this normal? No one seems to know. Anxious passengers crane their necks to get a better view out their windows. They’re all looking for one thing. Then it appears: a massive antenna array on the horizon. It’s sending out a p
     

Powering Planes With Microwaves Is Not the Craziest Idea

Od: Ian McKay
24. Červen 2024 v 15:00


Imagine it’s 2050 and you’re on a cross-country flight on a new type of airliner, one with no fuel on board. The plane takes off, and you rise above the airport. Instead of climbing to cruising altitude, though, your plane levels out and the engines quiet to a low hum. Is this normal? No one seems to know. Anxious passengers crane their necks to get a better view out their windows. They’re all looking for one thing.

Then it appears: a massive antenna array on the horizon. It’s sending out a powerful beam of electromagnetic radiation pointed at the underside of the plane. After soaking in that energy, the engines power up, and the aircraft continues its climb. Over several minutes, the beam will deliver just enough energy to get you to the next ground antenna located another couple hundred kilometers ahead.

The person next to you audibly exhales. You sit back in your seat and wait for your drink. Old-school EV-range anxiety is nothing next to this.

Electromagnetic waves on the fly

Beamed power for aviation is, I admit, an outrageous notion. If physics doesn’t forbid it, federal regulators or nervous passengers probably will. But compared with other proposals for decarbonizing aviation, is it that crazy?

Batteries, hydrogen, alternative carbon-based fuels—nothing developed so far can store energy as cheaply and densely as fossil fuels, or fully meet the needs of commercial air travel as we know it. So, what if we forgo storing all the energy on board and instead beam it from the ground? Let me sketch what it would take to make this idea fly.

Beamed Power for Aviation


Fly by Microwave: Warm up to a new kind of air travel

For the wireless-power source, engineers would likely choose microwaves because this type of electromagnetic radiation can pass unruffled through clouds and because receivers on planes could absorb it completely, with nearly zero risk to passengers.

To power a moving aircraft, microwave radiation would need to be sent in a tight, steerable beam. This can be done using technology known as a phased array, which is commonly used to direct radar beams. With enough elements spread out sufficiently and all working together, phased arrays can also be configured to focus power on a point a certain distance away, such as the receiving antenna on a plane.

Phased arrays work on the principle of constructive and destructive interference. The radiation from the antenna elements will, of course, overlap. In some directions the radiated waves will interfere destructively and cancel out one another, and in other directions the waves will fall perfectly in phase, adding together constructively. Where the waves overlap constructively, energy radiates in that direction, creating a beam of power that can be steered electronically.

How far we can send energy in a tight beam with a phased array is governed by physics—specifically, by something called the diffraction limit. There’s a simple way to calculate the optimal case for beamed power: D1 D2 > λ R. In this mathematical inequality, D1 and D2 are the diameters of the sending and receiving antennas, λ is the wavelength of the radiation, and R is the distance between those antennas.

Now, let me offer some ballpark numbers to figure out how big the transmitting antenna (D1) must be. The size of the receiving antenna on the aircraft is probably the biggest limiting factor. A medium-size airliner has a wing and body area of about 1,000 square meters, which should provide for the equivalent of a receiving antenna that’s 30 meters wide (D2) built into the underside of the plane.

If physics doesn’t forbid it, federal regulators or nervous passengers probably will.

Next, let’s guess how far we would need to beam the energy. The line of sight to the horizon for someone in an airliner at cruising altitude is about 360 kilometers long, assuming the terrain below is level. But mountains would interfere, plus nobody wants range anxiety, so let’s place our ground antennas every 200 km along the flight path, each beaming energy half of that distance. That is, set R to 100 km.

Finally, assume the microwave wavelength (λ) is 5 centimeters. This provides a happy medium between a wavelength that’s too small to penetrate clouds and one that’s too large to gather back together on a receiving dish. Plugging these numbers into the equation above shows that in this scenario the diameter of the ground antennas (D1) would need to be at least about 170 meters. That’s gigantic, but perhaps not unreasonable. Imagine a series of three or four of these antennas, each the size of a football stadium, spread along the route, say, between LAX and SFO or between AMS and BER.

Power beaming in the real world

While what I’ve described is theoretically possible, in practice engineers have beamed only a fraction of the amount of power needed for an airliner, and they’ve done that only over much shorter distances.

NASA holds the record from an experiment in 1975, when it beamed 30 kilowatts of power over 1.5 km with a dish the size of a house. To achieve this feat, the team used an analog device called a klystron. The geometry of a klystron causes electrons to oscillate in a way that amplifies microwaves of a particular frequency—kind of like how the geometry of a whistle causes air to oscillate and produce a particular pitch.

Klystrons and their cousins, cavity magnetrons (found in ordinary microwave ovens), are quite efficient because of their simplicity. But their properties depend on their precise geometry, so it’s challenging to coordinate many such devices to focus energy into a tight beam.

In more recent years, advances in semiconductor technology have allowed a single oscillator to drive a large number of solid-state amplifiers in near-perfect phase coordination. This has allowed microwaves to be focused much more tightly than was possible before, enabling more-precise energy transfer over longer distances.

In 2022, the Auckland-based startup Emrod showed just how promising this semiconductor-enabled approach could be. Inside a cavernous hangar in Germany owned by Airbus, the researchers beamed 550 watts across 36 meters and kept over 95 percent of the energy flowing in a tight beam—far better than could be achieved with analog systems. In 2021, the U.S. Naval Research Laboratory showed that these techniques could handle higher power levels when it sent more than a kilowatt between two ground antennas over a kilometer apart. Other researchers have energized drones in the air, and a few groups even intend to use phased arrays to beam solar power from satellites to Earth.

A rectenna for the ages

So beaming energy to airliners might not be entirely crazy. But please remain seated with your seat belts fastened; there’s some turbulence ahead for this idea. A Boeing 737 aircraft at takeoff requires about 30 megawatts—a thousand times as much power as any power-beaming experiment has demonstrated. Scaling up to this level while keeping our airplanes aerodynamic (and flyable) won’t be easy.

Consider the design of the antenna on the plane, which receives and converts the microwaves to an electric current to power the aircraft. This rectifying antenna, or rectenna, would need to be built onto the underside surfaces of the aircraft with aerodynamics in mind. Power transmission will be maximized when the plane is right above the ground station, but it would be far more limited the rest of the time, when ground stations are far ahead or behind the plane. At those angles, the beam would activate only either the front or rear surfaces of the aircraft, making it especially hard to receive enough power.

With 30 MW blasting onto that small of an area, power density will be an issue. If the aircraft is the size of Boeing 737, the rectenna would have to cram about 25 W into each square centimeter. Because the solid-state elements of the array would be spaced about a half-wavelength—or 2.5 cm—apart, this translates to about 150 W per element—perilously close to the maximum power density of any solid-state power-conversion device. The top mark in the 2016 IEEE/Google Little Box Challenge was about 150 W per cubic inch (less than 10 W per cubic centimeter).

The rectenna will also have to weigh very little and minimize the disturbance to the airflow over the plane. Compromising the geometry of the rectenna for aerodynamic reasons might lower its efficiency. State-of-the art power-transfer efficiencies are only about 30 percent, so the rectenna can’t afford to compromise too much.

A Boeing 737 aircraft at takeoff requires about 30 megawatts—a thousand times as much power as any power-beaming experiment has demonstrated.

And all of this equipment will have to work in an electric field of about 7,000 volts per meter—the strength of the power beam. The electric field inside a microwave oven, which is only about a third as strong, can create a corona discharge, or electric arc, between the tines of a metal fork, so just imagine what might happen inside the electronics of the rectenna.

And speaking of microwave ovens, I should mention that, to keep passengers from cooking in their seats, the windows on any beamed-power airplane would surely need the same wire mesh that’s on the doors of microwave ovens—to keep those sizzling fields outside the plane. Birds, however, won’t have that protection.

Fowl flying through our power beam near the ground might encounter a heating of more than 1,000 watts per square meter—stronger than the sun on a hot day. Up higher, the beam will narrow to a focal point with much more heat. But because that focal point would be moving awfully fast and located higher than birds typically fly, any roasted ducks falling from the sky would be rare in both senses of the word. Ray Simpkin, chief science officer at Emrod, told me it’d take “more than 10 minutes to cook a bird” with Emrod’s relatively low-power system.

Legal challenges would surely come, though, and not just from the National Audubon Society. Thirty megawatts beamed through the air would be about 10 billion times as strong as typical signals at 5-cm wavelengths (a band currently reserved for amateur radio and satellite communications). Even if the transmitter could successfully put 99 percent of the waves into a tight beam, the 1 percent that’s leaked would still be a hundred million times as strong as approved transmissions today.

And remember that aviation regulators make us turn off our cellphones during takeoff to quiet radio noise, so imagine what they’ll say about subjecting an entire plane to electromagnetic radiation that’s substantially stronger than that of a microwave oven. All these problems are surmountable, perhaps, but only with some very good engineers (and lawyers).

Compared with the legal obstacles and the engineering hurdles we’d need to overcome in the air, the challenges of building transmitting arrays on the ground, huge as they would have to be, seem modest. The rub is the staggering number of them that would have to be built. Many flights occur over mountainous terrain, producing a line of sight to the horizon that is less than 100 km. So in real-world terrain we’d need more closely spaced transmitters. And for the one-third of airline miles that occur over oceans, we would presumably have to build floating arrays. Clearly, building out the infrastructure would be an undertaking on the scale of the Eisenhower-era U.S. interstate highway system.

Decarbonizing with the world’s largest microwave

People might be able to find workarounds for many of these issues. If the rectenna is too hard to engineer, for example, perhaps designers will find that they don’t have to turn the microwaves back into electricity—there are precedents for using heat to propel airplanes. A sawtooth flight path—with the plane climbing up as it approaches each emitter station and gliding down after it passes by—could help with the power-density and field-of-view issues, as could flying-wing designs, which have much more room for large rectennas. Perhaps using existing municipal airports or putting ground antennas near solar farms could reduce some of the infrastructure cost. And perhaps researchers will find shortcuts to radically streamline phased-array transmitters. Perhaps, perhaps.

To be sure, beamed power for aviation faces many challenges. But less-fanciful options for decarbonizing aviation have their own problems. Battery-powered planes don’t even come close to meeting the needs of commercial airlines. The best rechargeable batteries have about 5 percent of the effective energy density of jet fuel. At that figure, an all-electric airliner would have to fill its entire fuselage with batteries—no room for passengers, sorry—and it’d still barely make it a tenth as far as an ordinary jet. Given that the best batteries have improved by only threefold in the past three decades, it’s safe to say that batteries won’t power commercial air travel as we know it anytime soon.

Any roasted ducks falling from the sky would be rare in both senses of the word.

Hydrogen isn’t much further along, despite early hydrogen-powered flights occurring nearly 40 years ago. And it’s potentially dangerous—enough that some designs for hydrogen planes have included two separate fuselages: one for fuel and one for people to give them more time to get away if the stuff gets explode-y. The same factors that have kept hydrogen cars off the road will probably keep hydrogen planes out of the sky.

Synthetic and biobased jet fuels are probably the most reasonable proposal. They’ll give us aviation just as we know it today, just at a higher cost—perhaps 20 to 50 percent more expensive per ticket. But fuels produced from food crops can be worse for the environment than the fossil fuels they replace, and fuels produced from CO2 and electricity are even less economical. Plus, all combustion fuels could still contribute to contrail formation, which makes up more than half of aviation’s climate impact.

The big problem with the “sane” approach for decarbonizing aviation is that it doesn’t present us with a vision of the future at all. At the very best, we’ll get a more expensive version of the same air travel experience the world has had since the 1970s.

True, beamed power is far less likely to work. But it’s good to examine crazy stuff like this from time to time. Airplanes themselves were a crazy idea when they were first proposed. If we want to clean up the environment and produce a future that actually looks like a future, we might have to take fliers on some unlikely sounding schemes.

❌
❌