FreshRSS

Normální zobrazení

Jsou dostupné nové články, klikněte pro obnovení stránky.
PředevčíremHlavní kanál
  • ✇Semiconductor Engineering
  • Chip Industry Week in ReviewThe SE Staff
    Okinawa Institute of Science and Technology proposed a new EUV litho technology using only four reflective mirrors and a new method of illumination optics that it claims will use 1/10 the power and cost half as much as existing EUV technology from ASML. Applied Materials may not receive expected U.S. funding to build a $4 billion research facility in Sunnyvale, CA, due to internal government disagreements over how to fund chip R&D, according to Bloomberg. SEMI published a position paper this
     

Chip Industry Week in Review

2. Srpen 2024 v 09:01

Okinawa Institute of Science and Technology proposed a new EUV litho technology using only four reflective mirrors and a new method of illumination optics that it claims will use 1/10 the power and cost half as much as existing EUV technology from ASML.

Applied Materials may not receive expected U.S. funding to build a $4 billion research facility in Sunnyvale, CA, due to internal government disagreements over how to fund chip R&D, according to Bloomberg.

SEMI published a position paper this week cautioning the European Union against imposing additional export controls to allow companies, encouraging them to  be “as free as possible in their investment decisions to avoid losing their agility and relevance across global markets.” SEMI’s recommendations on outbound investments are in response to the European Economic Security Strategy and emphasize the need for a transparent and predictable regulatory framework.

The U.S. may restrict China’s access to HBM chips and the equipment needed to make them, reports Bloomberg. Today those chips are manufactured by two Korean-based companies, Samsung and SK hynix, but U.S.-based Micron expects to begin shipping 12-high stacks of HBM3E in 2025, and is currently working on HBM4.

Synopsys executive chair and founder Dr. Aart de Geus was named the winner of the Semiconductor Industry Association’s Robert N. Noyce Award. De Geus was selected due to his contributions to EDA technology over a career spanning more than four decades.

The top three foundries plan to implement high-NA EUV lithography as early as 2025 for the 18 angstrom generation, but the replacement of single exposure high-NA (0.55) over double patterning with standard EUV (NA = 0.33) depends on whether it provides better results at a reasonable cost per wafer.

Quick links to more news:

Global
In-Depth
Market Reports and Earnings
Education and Training
Security
Product News
Research
Events and Further Reading


Global

Belgium-based Imec released part 2 of its chiplets series, addressing testing strategies and standardization efforts, as well as guidelines and research “towards efficient ESD protection strategies for advanced 3D systems-on-chip.”

Also in Belgium, BelGan, maker of GaN chips, filed for bankruptcy according to the Brussels Times.

TSMC‘s Dresden, Germany, plant will break ground this month.

The UK will dole out more than £100 million (~US $128 million) in funding to develop five new quantum research hubs in Glasgow, Edinburgh, Birmingham, Oxford, and London.

MassPhoton is opening Hong Kong‘s first ultra-high vacuum GaN epitaxial wafer pilot line and will establish a GaN research center.

Infineon completed the sale of its manufacturing sites in the Philippines and South Korea to ASE.

Israel-based RAAAM Memory Technologies received a €5.25 million grant from the European Innovation Council (EIC) to support the development and commercialization of its innovative memory solutions. This funding will enable RAAAM to advance its research in high-performance and energy-efficient memory technologies, accelerating their integration into various applications and markets.


In-Depth

Semiconductor Engineering published its Automotive, Security and Pervasive Computing newsletter this week, featuring these top stories and video:

And:


Market Reports and Earnings

The semiconductor equipment industry is on a positive trajectory in 2024, with moderate revenue growth observed in Q2 after a subdued Q1, according to a new report from Yole Group. Wafer Fab Equipment revenue is projected to grow by 1.3% year-on-year, despite a 12% drop in Q1. Test equipment lead times are normalizing, improving order conditions. Key areas driving growth include memory and logic capital expenditures and high-bandwidth memory demand.

Worldwide silicon wafer shipments increased by 7% in Q2 2024, according to SEMI‘s latest report. This growth is attributed to robust demand from multiple semiconductor sectors, driven by advancements in AI, 5G, and automotive technologies.

The RF GaN market is projected to grow to US $2 billion by 2029, a 10% CAGR, according to Yole Group.

Counterpoint released their Q2 smartphone top 10 report.

Renesas completed their acquisition of EDA firm Altium, best known for its EDA platform and freeware CircuitMaker package.

It’s earnings season and here are recently released financials in the chip industry:

AMD  Advantest   Amkor   Ansys  Arteris   Arm   ASE   ASM   ASML
Cadence  IBM   Intel   Lam Research   Lattice   Nordson   NXP   Onsemi 
Qualcomm   Rambus  Samsung    SK Hynix   STMicro   Teradyne    TI  
Tower  TSMC    UMC  Western Digital

Industry stock price impacts are here.


Education and Training

Rochester Institute of Technology is leading a new pilot program to prepare community college students in areas such as cleanroom operations, new materials, simulation, and testing processes, with the intent of eventual transfer into RIT’s microelectronic engineering program.

Purdue University inked a deal with three research institutions — University of Piraeus, Technical University of Crete, and King’s College London —to develop joint research programs for semiconductors, AI and other critical technology fields.

The European Chips Skills Academy formed the Educational Leaders Board to help bridge the talent gap in Europe’s microelectronics sector.  The Board includes representatives from universities, vocational training providers, educators and research institutions who collaborate on strategic initiatives to strengthen university networks and build academic expertise through ECSA training programs.


Security

The Cybersecurity and Infrastructure Security Agency (CISA) is encouraging Apple users to review and apply this week’s recent security updates.

Microsoft Azure experienced a nearly 10 hour DDoS attack this week, leading to global service disruption for many customers.  “While the initial trigger event was a Distributed Denial-of-Service (DDoS) attack, which activated our DDoS protection mechanisms, initial investigations suggest that an error in the implementation of our defenses amplified the impact of the attack rather than mitigating it,” stated Microsoft in a release.

NIST published:

  • “Recommendations For Increasing U.S. Participation and Leadership in Standards Development,” a report outlining cybersecurity recommendations and mitigation strategies.
  • Final guidance documents and software to help improve the “safety, security and trustworthiness of AI systems.”
  • Cloud Computing Forensic Reference Architecture guide.

Delta Air Lines plans to seek damages after losing $500 million in lost revenue due to security company CrowdStrike‘s software update debacle.  And shareholders are also angry.

Recent security research:

  • Physically Secure Logic Locking With Nanomagnet Logic (UT Dallas)
  • WBP: Training-time Backdoor Attacks through HW-based Weight Bit Poisoning (UCF)
  • S-Tune: SOT-MTJ Manufacturing Parameters Tuning for Secure Next Generation of Computing ( U. of Arizona, UCF)
  • Diffie Hellman Picture Show: Key Exchange Stories from Commercial VoWiFi Deployments (CISPA, SBA Research, U. of Vienna)

Product News

Lam Research introduced a new version of its cryogenic etch technology designed to enhance the manufacturing of 3D NAND for AI applications. This technology allows for the precise etching of high aspect ratio features, crucial for creating 1,000-layer 3D NAND.


Fig.1: 3D NAND etch. Source: Lam Research

Alphawave Semi launched its Universal Chiplet Interconnect Express Die-to-Die IP. The subsystem offers 8 Tbps/mm bandwidth density and supports operation at 24 Gbps for D2D connectivity.

Infineon introduced a new MCU series for industrial and consumer motor controls, as well as power conversion system applications. The company also unveiled its new GoolGaN Drive product family of integrated single switches and half-bridges with integrated drivers.

Rambus released its DDR5 Client Clock Driver for next-gen, high-performance desktops and notebooks. The chips include Gen1 to Gen4 RCDs, power management ICs, Serial Presence Detect Hubs, and temperature sensors for leading-edge servers.

SK hynix introduced its new GDDR7 graphics DRAM. The product has an operating speed of 32Gbps, can process 1.5TB of data per second and has a 50% power efficiency improvement compared to the previous generation.

Intel launched its new Lunar Lake Ultra processors. The long awaited chips will be included in more than 80 laptop designs and has more than 40 NPU tera operations per second as well as over 60 GPU TOPS delivering more than 100 platform TOPS.

Brewer Science achieved recertification as a Certified B Corporation, reaffirming its commitment to sustainable and ethical business practices.

Panasonic adopted Siemens’ Teamcenter X cloud product lifecycle management solution, citing Teamcenter X’s Mendix low-code platform, improved operational efficiency and flexibility for its choice.

Keysight validated its 5G NR FR1 1024-QAM demodulation test cases for the first time. The 5G NR radio access technology supports eMBB and was validated on the 3GPP TS 38.521-4 test specification.


Research

In a 47-page deep-dive report, the Center for Security and Emerging Technology delved into all of the scientific breakthroughs from 1980 to present that brought EUV lithography to commercialization, including lessons learned for the next emerging technologies.

Researchers at the Paul Scherrer Institute developed a high-performance X-ray tomography technique using burst ptychography, achieving a resolution of 4nm. This method allows for non-destructive imaging of integrated circuits, providing detailed views of nanostructures in materials like silicon and metals.

MIT signed a four-year agreement with the Novo Nordisk Foundation Quantum Computing Programme at University of Copenhagen, focused on accelerating quantum computing hardware research.

MIT’s Research Laboratory of Electronics (RLE) developed a mechanically flexible wafer-scale integrated photonics fabrication platform. This enables the creation of flexible photonic circuits that maintain high performance while being bendable and stretchable. It offers significant potential for integrating photonic circuits into various flexible substrate applications in wearable technology, medical devices, and flexible electronics.

The Naval Research Lab identified a new class of semiconductor nanocrystals with bright ground-state excitons, emphasizing an important advancement in optoelectronics.

Researchers from National University of Singapore developed a novel method, known as tension-driven CHARM3D,  to fabricate 3D self-healing circuits, enabling the 3D printing of free-standing metallic structures without the need for support materials and external pressure.

Find more research in our Technical Papers library.


Events and Further Reading

Find upcoming chip industry events here, including:

Event Date Location
Atomic Layer Deposition (ALD 2024) Aug 4 – 7 Helsinki
Flash Memory Summit Aug 6 – 8 Santa Clara, CA
USENIX Security Symposium Aug 14 – 16 Philadelphia, PA
SPIE Optics + Photonics 2024 Aug 18 – 22 San Diego, CA
Cadence Cloud Tech Day Aug 20 San Jose, CA
Hot Chips 2024 Aug 25- 27 Stanford University/ Hybrid
Optica Online Industry Meeting: PIC Manufacturing, Packaging and Testing (imec) Aug 27 Online
SEMICON Taiwan Sep 4 -6 Taipei
DVCON Taiwan Sep 10 – 11 Hsinchu
AI HW and Edge AI Summit Sep 9 – 12 San Jose, CA
GSA Executive Forum Sep 26 Menlo Park, CA
SPIE Photomask Technology + EUVL Sep 29 – Oct 3 Monterey, CA
Strategic Materials Conference: SMC 2024 Sep 30 – Oct 2 San Jose, CA
Find All Upcoming Events Here

Upcoming webinars are here, including topics such as quantum safe cryptography, analytics for high-volume manufacturing, and mastering EMC simulations for electronic design.

Find Semiconductor Engineering’s latest newsletters here:

Automotive, Security and Pervasive Computing
Systems and Design
Low Power-High Performance
Test, Measurement and Analytics
Manufacturing, Packaging and Materials

 

The post Chip Industry Week in Review appeared first on Semiconductor Engineering.

Classification and Localization of Semiconductor Defect Classes in Aggressive Pitches (imec, Screen)

A new technical paper titled “An Evaluation of Continual Learning for Advanced Node Semiconductor Defect Inspection” was published by Imec and SCREEN SPE Germany.

Abstract

“Deep learning-based semiconductor defect inspection has gained traction in recent years, offering a powerful and versatile approach that provides high accuracy, adaptability, and efficiency in detecting and classifying nano-scale defects. However, semiconductor manufacturing processes are continually evolving, leading to the emergence of new types of defects over time. This presents a significant challenge for conventional supervised defect detectors, as they may suffer from catastrophic forgetting when trained on new defect datasets, potentially compromising performance on previously learned tasks. An alternative approach involves the constant storage of previously trained datasets alongside pre-trained model versions, which can be utilized for (re-)training from scratch or fine-tuning whenever encountering a new defect dataset. However, adhering to such a storage template is impractical in terms of size, particularly when considering High-Volume Manufacturing (HVM). Additionally, semiconductor defect datasets, especially those encompassing stochastic defects, are often limited and expensive to obtain, thus lacking sufficient representation of the entire universal set of defectivity. This work introduces a task-agnostic, meta-learning approach aimed at addressing this challenge, which enables the incremental addition of new defect classes and scales to create a more robust and generalized model for semiconductor defect inspection. We have benchmarked our approach using real resist-wafer SEM (Scanning Electron Microscopy) datasets for two process steps, ADI and AEI, demonstrating its superior performance compared to conventional supervised training methods.”

Find the technical paper here.  Published July 2024 (preprint).

Prasad, Amit, Bappaditya Dey, Victor Blanco, and Sandip Halder. “An Evaluation of Continual Learning for Advanced Node Semiconductor Defect Inspection.” arXiv preprint arXiv:2407.12724 (2024).

The post Classification and Localization of Semiconductor Defect Classes in Aggressive Pitches (imec, Screen) appeared first on Semiconductor Engineering.

  • ✇Semiconductor Engineering
  • Chip Industry Week in ReviewThe SE Staff
    Okinawa Institute of Science and Technology proposed a new EUV litho technology using only four reflective mirrors and a new method of illumination optics that it claims will use 1/10 the power and cost half as much as existing EUV technology from ASML. Applied Materials may not receive expected U.S. funding to build a $4 billion research facility in Sunnyvale, CA, due to internal government disagreements over how to fund chip R&D, according to Bloomberg. SEMI published a position paper this
     

Chip Industry Week in Review

2. Srpen 2024 v 09:01

Okinawa Institute of Science and Technology proposed a new EUV litho technology using only four reflective mirrors and a new method of illumination optics that it claims will use 1/10 the power and cost half as much as existing EUV technology from ASML.

Applied Materials may not receive expected U.S. funding to build a $4 billion research facility in Sunnyvale, CA, due to internal government disagreements over how to fund chip R&D, according to Bloomberg.

SEMI published a position paper this week cautioning the European Union against imposing additional export controls to allow companies, encouraging them to  be “as free as possible in their investment decisions to avoid losing their agility and relevance across global markets.” SEMI’s recommendations on outbound investments are in response to the European Economic Security Strategy and emphasize the need for a transparent and predictable regulatory framework.

The U.S. may restrict China’s access to HBM chips and the equipment needed to make them, reports Bloomberg. Today those chips are manufactured by two Korean-based companies, Samsung and SK hynix, but U.S.-based Micron expects to begin shipping 12-high stacks of HBM3E in 2025, and is currently working on HBM4.

Synopsys executive chair and founder Dr. Aart de Geus was named the winner of the Semiconductor Industry Association’s Robert N. Noyce Award. De Geus was selected due to his contributions to EDA technology over a career spanning more than four decades.

The top three foundries plan to implement high-NA EUV lithography as early as 2025 for the 18 angstrom generation, but the replacement of single exposure high-NA (0.55) over double patterning with standard EUV (NA = 0.33) depends on whether it provides better results at a reasonable cost per wafer.

Quick links to more news:

Global
In-Depth
Market Reports and Earnings
Education and Training
Security
Product News
Research
Events and Further Reading


Global

Belgium-based Imec released part 2 of its chiplets series, addressing testing strategies and standardization efforts, as well as guidelines and research “towards efficient ESD protection strategies for advanced 3D systems-on-chip.”

Also in Belgium, BelGan, maker of GaN chips, filed for bankruptcy according to the Brussels Times.

TSMC‘s Dresden, Germany, plant will break ground this month.

The UK will dole out more than £100 million (~US $128 million) in funding to develop five new quantum research hubs in Glasgow, Edinburgh, Birmingham, Oxford, and London.

MassPhoton is opening Hong Kong‘s first ultra-high vacuum GaN epitaxial wafer pilot line and will establish a GaN research center.

Infineon completed the sale of its manufacturing sites in the Philippines and South Korea to ASE.

Israel-based RAAAM Memory Technologies received a €5.25 million grant from the European Innovation Council (EIC) to support the development and commercialization of its innovative memory solutions. This funding will enable RAAAM to advance its research in high-performance and energy-efficient memory technologies, accelerating their integration into various applications and markets.


In-Depth

Semiconductor Engineering published its Automotive, Security and Pervasive Computing newsletter this week, featuring these top stories and video:

And:


Market Reports and Earnings

The semiconductor equipment industry is on a positive trajectory in 2024, with moderate revenue growth observed in Q2 after a subdued Q1, according to a new report from Yole Group. Wafer Fab Equipment revenue is projected to grow by 1.3% year-on-year, despite a 12% drop in Q1. Test equipment lead times are normalizing, improving order conditions. Key areas driving growth include memory and logic capital expenditures and high-bandwidth memory demand.

Worldwide silicon wafer shipments increased by 7% in Q2 2024, according to SEMI‘s latest report. This growth is attributed to robust demand from multiple semiconductor sectors, driven by advancements in AI, 5G, and automotive technologies.

The RF GaN market is projected to grow to US $2 billion by 2029, a 10% CAGR, according to Yole Group.

Counterpoint released their Q2 smartphone top 10 report.

Renesas completed their acquisition of EDA firm Altium, best known for its EDA platform and freeware CircuitMaker package.

It’s earnings season and here are recently released financials in the chip industry:

AMD  Advantest   Amkor   Ansys  Arteris   Arm   ASE   ASM   ASML
Cadence  IBM   Intel   Lam Research   Lattice   Nordson   NXP   Onsemi 
Qualcomm   Rambus  Samsung    SK Hynix   STMicro   Teradyne    TI  
Tower  TSMC    UMC  Western Digital

Industry stock price impacts are here.


Education and Training

Rochester Institute of Technology is leading a new pilot program to prepare community college students in areas such as cleanroom operations, new materials, simulation, and testing processes, with the intent of eventual transfer into RIT’s microelectronic engineering program.

Purdue University inked a deal with three research institutions — University of Piraeus, Technical University of Crete, and King’s College London —to develop joint research programs for semiconductors, AI and other critical technology fields.

The European Chips Skills Academy formed the Educational Leaders Board to help bridge the talent gap in Europe’s microelectronics sector.  The Board includes representatives from universities, vocational training providers, educators and research institutions who collaborate on strategic initiatives to strengthen university networks and build academic expertise through ECSA training programs.


Security

The Cybersecurity and Infrastructure Security Agency (CISA) is encouraging Apple users to review and apply this week’s recent security updates.

Microsoft Azure experienced a nearly 10 hour DDoS attack this week, leading to global service disruption for many customers.  “While the initial trigger event was a Distributed Denial-of-Service (DDoS) attack, which activated our DDoS protection mechanisms, initial investigations suggest that an error in the implementation of our defenses amplified the impact of the attack rather than mitigating it,” stated Microsoft in a release.

NIST published:

  • “Recommendations For Increasing U.S. Participation and Leadership in Standards Development,” a report outlining cybersecurity recommendations and mitigation strategies.
  • Final guidance documents and software to help improve the “safety, security and trustworthiness of AI systems.”
  • Cloud Computing Forensic Reference Architecture guide.

Delta Air Lines plans to seek damages after losing $500 million in lost revenue due to security company CrowdStrike‘s software update debacle.  And shareholders are also angry.

Recent security research:

  • Physically Secure Logic Locking With Nanomagnet Logic (UT Dallas)
  • WBP: Training-time Backdoor Attacks through HW-based Weight Bit Poisoning (UCF)
  • S-Tune: SOT-MTJ Manufacturing Parameters Tuning for Secure Next Generation of Computing ( U. of Arizona, UCF)
  • Diffie Hellman Picture Show: Key Exchange Stories from Commercial VoWiFi Deployments (CISPA, SBA Research, U. of Vienna)

Product News

Lam Research introduced a new version of its cryogenic etch technology designed to enhance the manufacturing of 3D NAND for AI applications. This technology allows for the precise etching of high aspect ratio features, crucial for creating 1,000-layer 3D NAND.


Fig.1: 3D NAND etch. Source: Lam Research

Alphawave Semi launched its Universal Chiplet Interconnect Express Die-toDie IP. The subsystem offers 8 Tbps/mm bandwidth density and supports operation at 24 Gbps for D2D connectivity.

Infineon introduced a new MCU series for industrial and consumer motor controls, as well as power conversion system applications. The company also unveiled its new GoolGaN Drive product family of integrated single switches and half-bridges with integrated drivers.

Rambus released its DDR5 Client Clock Driver for next-gen, high-performance desktops and notebooks. The chips include Gen1 to Gen4 RCDs, power management ICs, Serial Presence Detect Hubs, and temperature sensors for leading-edge servers.

SK hynix introduced its new GDDR7 graphics DRAM. The product has an operating speed of 32Gbps, can process 1.5TB of data per second and has a 50% power efficiency improvement compared to the previous generation.

Intel launched its new Lunar Lake Ultra processors. The long awaited chips will be included in more than 80 laptop designs and has more than 40 NPU tera operations per second as well as over 60 GPU TOPS delivering more than 100 platform TOPS.

Brewer Science achieved recertification as a Certified B Corporation, reaffirming its commitment to sustainable and ethical business practices.

Panasonic adopted Siemens’ Teamcenter X cloud product lifecycle management solution, citing Teamcenter X’s Mendix low-code platform, improved operational efficiency and flexibility for its choice.

Keysight validated its 5G NR FR1 1024-QAM demodulation test cases for the first time. The 5G NR radio access technology supports eMBB and was validated on the 3GPP TS 38.521-4 test specification.


Research

In a 47-page deep-dive report, the Center for Security and Emerging Technology delved into all of the scientific breakthroughs from 1980 to present that brought EUV lithography to commercialization, including lessons learned for the next emerging technologies.

Researchers at the Paul Scherrer Institute developed a high-performance X-ray tomography technique using burst ptychography, achieving a resolution of 4nm. This method allows for non-destructive imaging of integrated circuits, providing detailed views of nanostructures in materials like silicon and metals.

MIT signed a four-year agreement with the Novo Nordisk Foundation Quantum Computing Programme at University of Copenhagen, focused on accelerating quantum computing hardware research.

MIT’s Research Laboratory of Electronics (RLE) developed a mechanically flexible wafer-scale integrated photonics fabrication platform. This enables the creation of flexible photonic circuits that maintain high performance while being bendable and stretchable. It offers significant potential for integrating photonic circuits into various flexible substrate applications in wearable technology, medical devices, and flexible electronics.

The Naval Research Lab identified a new class of semiconductor nanocrystals with bright ground-state excitons, emphasizing an important advancement in optoelectronics.

Researchers from National University of Singapore developed a novel method, known as tension-driven CHARM3D,  to fabricate 3D self-healing circuits, enabling the 3D printing of free-standing metallic structures without the need for support materials and external pressure.

Find more research in our Technical Papers library.


Events and Further Reading

Find upcoming chip industry events here, including:

Event Date Location
Atomic Layer Deposition (ALD 2024) Aug 4 – 7 Helsinki
Flash Memory Summit Aug 6 – 8 Santa Clara, CA
USENIX Security Symposium Aug 14 – 16 Philadelphia, PA
SPIE Optics + Photonics 2024 Aug 18 – 22 San Diego, CA
Cadence Cloud Tech Day Aug 20 San Jose, CA
Hot Chips 2024 Aug 25- 27 Stanford University/ Hybrid
Optica Online Industry Meeting: PIC Manufacturing, Packaging and Testing (imec) Aug 27 Online
SEMICON Taiwan Sep 4 -6 Taipei
DVCON Taiwan Sep 10 – 11 Hsinchu
AI HW and Edge AI Summit Sep 9 – 12 San Jose, CA
GSA Executive Forum Sep 26 Menlo Park, CA
SPIE Photomask Technology + EUVL Sep 29 – Oct 3 Monterey, CA
Strategic Materials Conference: SMC 2024 Sep 30 – Oct 2 San Jose, CA
Find All Upcoming Events Here

Upcoming webinars are here, including topics such as quantum safe cryptography, analytics for high-volume manufacturing, and mastering EMC simulations for electronic design.

Find Semiconductor Engineering’s latest newsletters here:

Automotive, Security and Pervasive Computing
Systems and Design
Low Power-High Performance
Test, Measurement and Analytics
Manufacturing, Packaging and Materials

 

The post Chip Industry Week in Review appeared first on Semiconductor Engineering.

Classification and Localization of Semiconductor Defect Classes in Aggressive Pitches (imec, Screen)

A new technical paper titled “An Evaluation of Continual Learning for Advanced Node Semiconductor Defect Inspection” was published by Imec and SCREEN SPE Germany.

Abstract

“Deep learning-based semiconductor defect inspection has gained traction in recent years, offering a powerful and versatile approach that provides high accuracy, adaptability, and efficiency in detecting and classifying nano-scale defects. However, semiconductor manufacturing processes are continually evolving, leading to the emergence of new types of defects over time. This presents a significant challenge for conventional supervised defect detectors, as they may suffer from catastrophic forgetting when trained on new defect datasets, potentially compromising performance on previously learned tasks. An alternative approach involves the constant storage of previously trained datasets alongside pre-trained model versions, which can be utilized for (re-)training from scratch or fine-tuning whenever encountering a new defect dataset. However, adhering to such a storage template is impractical in terms of size, particularly when considering High-Volume Manufacturing (HVM). Additionally, semiconductor defect datasets, especially those encompassing stochastic defects, are often limited and expensive to obtain, thus lacking sufficient representation of the entire universal set of defectivity. This work introduces a task-agnostic, meta-learning approach aimed at addressing this challenge, which enables the incremental addition of new defect classes and scales to create a more robust and generalized model for semiconductor defect inspection. We have benchmarked our approach using real resist-wafer SEM (Scanning Electron Microscopy) datasets for two process steps, ADI and AEI, demonstrating its superior performance compared to conventional supervised training methods.”

Find the technical paper here.  Published July 2024 (preprint).

Prasad, Amit, Bappaditya Dey, Victor Blanco, and Sandip Halder. “An Evaluation of Continual Learning for Advanced Node Semiconductor Defect Inspection.” arXiv preprint arXiv:2407.12724 (2024).

The post Classification and Localization of Semiconductor Defect Classes in Aggressive Pitches (imec, Screen) appeared first on Semiconductor Engineering.

  • ✇Semiconductor Engineering
  • Chip Industry Week In ReviewThe SE Staff
    BAE Systems and GlobalFoundries are teaming up to strengthen the supply of chips for national security programs, aligning technology roadmaps and collaborating on innovation and manufacturing. Focus areas include advanced packaging, GaN-on-silicon chips, silicon photonics, and advanced technology process development. Onsemi plans to build a $2 billion silicon carbide production plant in the Czech Republic. The site would produce smart power semiconductors for electric vehicles, renewable energy
     

Chip Industry Week In Review

21. Červen 2024 v 09:01

BAE Systems and GlobalFoundries are teaming up to strengthen the supply of chips for national security programs, aligning technology roadmaps and collaborating on innovation and manufacturing. Focus areas include advanced packaging, GaN-on-silicon chips, silicon photonics, and advanced technology process development.

Onsemi plans to build a $2 billion silicon carbide production plant in the Czech Republic. The site would produce smart power semiconductors for electric vehicles, renewable energy technology, and data centers.

The global chip manufacturing industry is projected to boost capacity by 6% in 2024 and 7% in 2025, reaching 33.7 million 8-inch (200mm) wafers per month, according to SEMIs latest World Fab Forecast report. Leading-edge capacity for 5nm nodes and below is expected to grow by 13% in 2024, driven by AI demand for data center applications. Additionally, Intel, Samsung, and TSMC will begin producing 2nm chips using gate-all-around (GAA) FETs next year, boosting leading-edge capacity by 17% in 2025.

At the IEEE Symposium on VLSI Technology & Circuits, imec introduced:

  • Functional CMOS-based CFETs with stacked bottom and top source/drain contacts.
  • CMOS-based 56Gb/s zero-IF D-band beamforming transmitters to support next-gen short-range, high-speed wireless services at frequencies above 100GHz.
  • ADCs for base stations and handsets, a key step toward scalable, high-performance beyond-5G solutions, such as cloud-based AI and extended reality apps.

Quick links to more news:

Global
In-Depth
Market Reports
Education and Training
Security
Product News
Research
Events and Further Reading


Global

Wolfspeed postponed plans to construct a $3 billion chip plant in Germany, underscoring the EU‘s challenges in boosting semiconductor production, reports Reuters. The North Carolina-based company cited reduced capital spending due to a weakened EV market, saying it now aims to start construction in mid-2025, two years later than 0riginally planned.

Micron is building a pilot production line for high-bandwidth memory (HBM) in the U.S., and considering HBM production in Malaysia to meet growing AI demand, according to a Nikkei report. The company is expanding HBM R&D facilities in Boise, Idaho, and eyeing production capacity in Malaysia, while also enhancing its largest HBM facility in Taichung, Taiwan.

Kioxia restored its Yokkaichi and Kitakami plants in Japan to full capacity, ending production cuts as the memory market recovers, according to Nikkei. The company, which is focusing on NAND flash production, has secured new bank credit support, including refinancing a ¥540 billion loan and establishing a ¥210 billion credit line. Kioxia had reduced output by more than 30% in October 2022 due to weak smartphone demand.

Europe’s NATO Innovation Fund announced its first direct investments, which includes semiconductor materials. Twenty-three NATO allies co-invested in this over $1B fund devoted to address critical defense and security challenges.

The second meeting of the U.S.India Initiative on Critical and Emerging Technology (iCET) was held in New Delhi, with various funding and initiatives announced to support semiconductor technology, next-gen telecommunications, connected and autonomous vehicles, ML, and more.

Amazon announced investments of €10 billion in Germany to drive innovation and support the expansion of its logistics network and cloud infrastructure.

Quantum Machines opened the Israeli Quantum Computing Center (IQCC) research facility, backed by the Israel Innovation Authority and located at Tel Aviv University. Also, Israel-based Classiq is collaborating with NVIDIA and BMW, using quantum computing to find the optimal automotive architecture of electrical and mechanical systems.

Global data center vacancy rates are at historic lows, and power availability is becoming less available, according to a Siemens report featured on Broadband Breakfast. The company called for an influx of financing to find new ways to optimize data center technology and sustainability.


In-Depth

Semiconductor Engineering published its Manufacturing, Packaging & Materials newsletter this week, featuring these top stories:

More reporting this week:


Market Reports

Renesas completed its acquisition of Transphorm and will immediately start offering GaN-based power products and reference designs to meet the demand for wide-bandgap (WBG) chips.

Revenues for the top five wafer fab equipment (WFE) companies fell 9% YoY in Q1 2024, according to Counterpoint. This was offset partially by increased demand for NAND and DRAM, which increased 33% YoY, and strong growth in sales to China, which were up 116% YoY.

The SiC power devices industry saw robust growth in 2023, primarily driven by the BEV market, according to TrendForce. The top five suppliers, led by ST with a 32.6% market share and onsemi in second place, accounted for 91.9% of total revenue. However, the anticipated slowdown in BEV sales and weakening industrial demand are expected to significantly decelerate revenue growth in 2024. 

About 30% of vehicles produced globally will have E/E architectures with zonal controllers by 2032, according to McKinsey & Co. The market for automotive micro-components and logic semiconductors is predicted to reach $60 billion in 2032, and the overall automotive semiconductor market is expected to grow from $60 billion to $140 billion in the same period, at a 10% CAGR.

The automotive processor market generated US$20 billion in revenue in 2023, according to Yole. US$7.8 billion was from APUs and FPGAs and $12.2 billion was from MCUs. The ADAS and infotainment processors market was worth US$7.8 billion in 2023 and is predicted to grow to $16.4 billion by 2029 at a 13% CAGR. The market for ADAS sensing is expected to grow at a 7% CAGR.


Security

The CHERI Alliance was established to drive adoption of memory safety and scalable software compartmentalization via the security technology CHERI, or Capability Hardware Enhanced RISC Instructions. Founding members include Capabilities Limited, Codasip, the FreeBSD Foundation, lowRISC, SCI Semiconductor, and the University of Cambridge.

In security research:

  • Japan and China researchers explored a NAND-XOR ring oscillator structure to design an entropy source architecture for a true random number generator (TRNG).
  • University of Toronto and Carleton University researchers presented a survey examining how hardware is applied to achieve security and how reported attacks have exploited certain defects in hardware.
  • University of North Texas and Texas Woman’s University researchers explored the potential of hardware security primitive Physical Unclonable Functions (PUF) for mitigation of visual deepfakes.
  • Villanova University researchers proposed the Boolean DERIVativE attack, which generalizes Boolean domain leakage.

Post-quantum cryptography firm PQShield raised $37 million in Series B funding.

Former OpenAI executive, Ilya Sutskever, who quit over safety concerns, launched Safe Superintelligence Inc. (SSI).

EU industry groups warned the European Commission that its proposed cybersecurity certification scheme (EUCS) for cloud services should not discriminate against Amazon, Google, and Microsoft, reported Reuters.

Cyber Europe tested EU cyber preparedness in the energy sector by simulating a series of large-scale cyber incidents in an exercise organized by the European Union Agency for Cybersecurity (ENISA).

The Cybersecurity and Infrastructure Security Agency (CISA) issued a number of alerts/advisories.


Education and Training

New York non-profit NY CREATES and South Korea’s National Nano Fab Center partnered to develop a hub for joint research, aligned technology services, testbed support, and an engineer exchange program to bolster chips-centered R&D, workforce development, and each nation’s high-tech ecosystem.

New York and the Netherlands agreed on a partnership to promote sustainability within the semiconductor industry, enhance workforce development, and boost semiconductor R&D.

Rapidus is set to send 200 engineers to AI chip developer Tenstorrent in the U.S. for training over the next five years, reports Nikkei. This initiative, led by Japan’s Leading-edge Semiconductor Technology Center (LSTC), aims to bolster Japan’s AI chip industry.


Product News

UMC announced its 22nm embedded high voltage (eHV) technology platform for premium smartphone and mobile device displays. The 22eHV platform reduces core device power consumption by up to 30% compared to previous 28nm processes. Die area is reduced by 10% with the industry’s smallest SRAM bit cells.​

Alphawave Semi announced a new 9.2 Gbps HBM3E sub-system silicon platform capable of 1.2 terabytes per second. Based on the HBM3E IP, the sub-system is aimed at addressing the demand for ultra-high-speed connectivity in high-performance compute applications.

Movellus introduced the Aeonic Power product family for on-die voltage regulation, targeting the challenging area of power delivery.

Cadence partnered with Semiwise and sureCore to develop new cryogenic CMOS circuits with possible quantum computing applications. The circuits are based on modified transistors found in the Cadence Spectre Simulation Platform and are capable of processing analog, mixed-signal, and digital circuit simulation and verification at cryogenic temperatures.

Renesas launched R-Car Open Access (RoX), an integrated development platform for software-defined vehicles (SDVs), designed for Renesas R-Car SoCs and MCUs with tools for deployment of AI applications, reducing complexity and saving time and money for car OEMs and Tier 1s.

Infineon released industry-first radiation-hardened 1 and 2 Mb parallel interface ferroelectric-RAM (F-RAM) nonvolatile memory devices, with up to 120 years of data retention at 85-degree Celsius, along with random access and full memory write at bus speeds. Plus, a CoolGaN Transistor 700 V G4 product family for efficient power conversion up to 700 V, ideal for consumer chargers and notebook adapters, data center power supplies, renewable energy inverters, and more.

Ansys adopted NVIDIA’s Omniverse application programming interfaces for its multi-die chip designers. Those APIs will be used for 5G/6G, IoT, AI/ML, cloud computing, and autonomous vehicle applications. The company also announced ConceptEV, an SaaS solution for automotive concept design for EVs.

Fig. 1: Field visualization of 3D-IC with Omniverse. Source: Ansys

QP Technologies announced a new dicing saw for its manufacturing line that can process a full cassette of 300mm wafers 7% faster than existing tools, improving throughput and productivity.

NXP introduced its SAF9xxx of audio DSPs to support the demand for AI-based audio in software-defined vehicles (SDVs) by using Cadence’s Tensilica HiFi 5 DSPs combined with dedicated neural-network engines and hardware-based accelerators.

Avionyx, a provider of software lifecycle engineering in the aerospace and safety-critical systems sector, partnered with Siemens and will leverage its Polarion application lifecycle management (ALM) tool. Also, Dovetail Electric Aviation adopted Siemens Xcelerator to support sustainable aviation.


Research

Researchers from imec and KU Leuven released a +70 page paper “Selecting Alternative Metals for Advanced Interconnects,” addressing interconnect resistance and reliability.

A comprehensive review article — “Future of plasma etching for microelectronics: Challenges and opportunities” — was created by a team of experts from the University of Maryland, Lam Research, IBM, Intel, and many others.

Researchers from the Institut Polytechnique de Paris’s Laboratory of Condensed Matter for Physics developed an approach to investigate defects in semiconductors. The team “determined the spin-dependent electronic structure linked to defects in the arrangement of semiconductor atoms,” the first time this structure has been measured, according to a release.

Lawrence Berkeley National Laboratory-led researchers developed a small enclosed chamber that can hold all the components of an electrochemical reaction, which can be paired with transmission electron microscopy (TEM) to generate precise views of a reaction at atomic scale, and can be frozen to stop the reaction at specific time points. They used the technique to study a copper catalyst.

The Federal Drug Administration (FDA) approved a clinical trial to test a device with 1,024 nanoscale sensors that records brain activity during surgery, developed by engineers at the University of California San Diego (UC San Diego).


Events and Further Reading

Find upcoming chip industry events here, including:

Event Date Location
Standards for Chiplet Design with 3DIC Packaging (Part 2) Jun 21 Online
DAC 2024 Jun 23 – 27 San Francisco
RISC-V Summit Europe 2024 Jun 24 – 28 Munich
Leti Innovation Days 2024 Jun 25 – 27 Grenoble, France
ISCA 2024 Jun 29 – Jul 3 Buenos Aires, Argentina
SEMICON West Jul 9 – 11 San Francisco
Flash Memory Summit Aug 6 – 8 Santa Clara, CA
USENIX Security Symposium Aug 14 – 16 Philadelphia, PA
Hot Chips 2024 Aug 25- 27 Stanford University
Find All Upcoming Events Here

Upcoming webinars are here.

Semiconductor Engineering’s latest newsletters:

Automotive, Security and Pervasive Computing
Systems and Design
Low Power-High Performance
Test, Measurement and Analytics
Manufacturing, Packaging and Materials


The post Chip Industry Week In Review appeared first on Semiconductor Engineering.

  • ✇Semiconductor Engineering
  • Chip Industry Week In ReviewThe SE Staff
    Rapidus and IBM are jointly developing mass production capabilities for chiplet-based advanced packages. The collaboration builds on an existing agreement to develop 2nm process technology. Vanguard and NXP will jointly establish VisionPower Semiconductor Manufacturing Company (VSMC) in Singapore to build a $7.8 billion, 12-inch wafer plant. This is part of a global supply chain shift “Out of China, Out of Taiwan,” according to TrendForce. Alphawave joined forces with Arm to develop an advanced
     

Chip Industry Week In Review

7. Červen 2024 v 09:01

Rapidus and IBM are jointly developing mass production capabilities for chiplet-based advanced packages. The collaboration builds on an existing agreement to develop 2nm process technology.

Vanguard and NXP will jointly establish VisionPower Semiconductor Manufacturing Company (VSMC) in Singapore to build a $7.8 billion, 12-inch wafer plant. This is part of a global supply chain shift “Out of China, Out of Taiwan,” according to TrendForce.

Alphawave joined forces with Arm to develop an advanced chiplet based on Arm’s Neoverse Compute Subystems for AI/ML. The chiplet contains the Neoverse N3 CPU core cluster and Arm Coherent Mesh Network, and will be targeted at HPC in data centers, AI/ML applications, and 5G/6G infrastructure.

ElevATE Semiconductor and GlobalFoundries will partner for high-voltage chips to be produced at GF’s facility in Essex Junction, Vermont, which GF bought from IBM. The chips are essential for semiconductor testing equipment, aerospace, and defense systems.

NVIDIA, OpenAI, and Microsoft are under investigation by the U.S. Federal Trade Commission and Justice Department for violation of antitrust laws in the generative AI industry, according to the New York Times.

Quick links to more news:

Market Reports
Global
In-Depth
Education and Training
Security
Product News
Research
Events and Further Reading


Global

Apollo Global Management will invest $11 billion in Intel’s Fab 34 in Ireland, thereby acquiring a 49% stake in Intel’s Irish manufacturing operations.

imec and ASML opened their jointly run High-NA EUV Lithography Lab in Veldhoven, the Netherlands. The lab will be used to prepare  the next-generation litho for high-volume manufacturing, expected to begin in 2025 or 2026.

Expedera opened a new semiconductor IP design center in India. The location, the sixth of its kind for the company, is aimed at helping to make up for a shortfall in trained technicians, researchers, and engineers in the semiconductor sector.

Foxconn will build an advanced computing center in Taiwan with NVIDIA’s Blackwell platform at its core. The site will feature GB200 servers, which consist of 64 racks and 4,608 GPUs, and will be completed by 2026.

Intel and its 14 partner companies in Japan will use Sharp‘s LCD plants to research semiconductor production technology, a cost reduction move that should also produce income for Sharp, according to Nikkei Asia.

Japan is considering legislation to support the commercial production of advanced semiconductors, per Reuters.

Saudi Arabia aims to establish at least 50 semiconductor design companies as part of a new National Semiconductor Hub, funded with over $266 million.

Air Liquide is opening a new industrial gas production facility in Idaho, which will produce ultra-pure nitrogen and other gases for Micron’s new fab.

Microsoft will invest 33.7 billion Swedish crowns ($3.2 billion) to expand its cloud and AI infrastructure in Sweden over a two-year period, reports Bloomberg. The company also will invest $1 billion to establish a new data center in northwest Indiana.

AI data centers could consume as much as 9.1% of the electricity generated in the U.S. by 2030, according to a white paper published by the Electric Power Research Institute. That would more than double the electricity currently consumed by data centers, though EPRI notes this is a worst case scenario and advances in efficiency could be a mitigating factor.


Markets and Money

The Semiconductor Industry Association (SIA) announced global semiconductor sales increased 15.8% year-over-year in April, and the group projected a market growth of 16% in 2024. Conversely, global semiconductor equipment billings contracted 2% year-over-year to US$26.4 billion in Q1 2024, while quarter-over-quarter billings dropped 6% during the same period, according to SEMI‘s Worldwide Semiconductor Equipment Market Statistics (WWSEMS) Report.

Cadence completed its acquisition of BETA CAE Systems International, a provider of multi-domain, engineering simulation solutions.

Cisco‘s investment arm launched a $1 billion fund to aid AI startups as part of its AI innovation strategy. Nearly $200 million has already been earmarked.

The power and RF GaN markets will grow beyond US$2.45 billion and US$1.9 billion in 2029, respectively, according to Yole, which is offering a webinar on the topic.

The micro LED chip market is predicted to reach $580 million by 2028, driven by head-mounted devices and automotive applications, according to TrendForce. The cost of Micro LED chips may eventually come down due to size miniaturization.


In-Depth

Semiconductor Engineering published its Automotive, Security, and Pervasive Computing newsletter this week, featuring these top stories:

More reporting this week:


Security

Scott Best, Rambus senior director of Silicon Security Products, delivered a keynote at the Hardwear.io conference this week (below), detailing a $60 billion reverse engineering threat for hardware in just three markets — $30 billion for printer consumables, $20 billion for rechargeable batteries with some type of authentication, and $10 billion for medical devices such as sonogram probes.


Photo source: Ed Sperling/Semiconductor Engineering

wolfSSL debuted wolfHSM for automotive hardware security modules, with its cryptographic library ported to run in automotive HSMs like Infineon’s Aurix Tricore TC3XX.

Cisco integrated AMD Pensando data processing units (DPUs) with its Hypershield security architecture for defending AI-scale data centers.

OMNIVISION released an intelligent CMOS image sensor for human presence detection, infrared facial authentication, and always-on technology with a single sensing camera. And two new image sensors for industrial and consumer security surveillance cameras.

Digital Catapult announced a new cohort of companies will join Digital Security by Design’s Technology Access Program, gaining access to an Arm Morello prototype evaluation hardware kit based on Capability Hardware Enhanced RISC Instructions (CHERI), to find applications across critical UK sectors.

University of Southampton researchers used formal verification to evaluate the hardware reliability of a RISC-V ibex core in the presence of soft errors.

Several institutions published their students’ master’s and PhD work:

  • Virginia Tech published a dissertation proposing sPACtre, a defense mechanism that aims to prevent Spectre control-flow attacks on existing hardware.
  • Wright State University published a thesis proposing an approach that uses various machine learning models to bring an improvement in hardware Trojan identification with power signal side channel analysis
  • Wright State University published a thesis examining the effect of aging on the reliability of SRAM PUFs used for secure and trusted microelectronics IC applications.
  • Nanyang Technological University published a Final Year Project proposing a novel SAT-based circuit preprocessing attack based on the concept of logic cones to enhance the efficacy of SAT attacks on complex circuits like multipliers.

The Cybersecurity and Infrastructure Security Agency (CISA) issued a number of alerts/advisories.


Education and Training

Renesas and the Indian Institute of Technology Hyderabad (IIT Hyderabad) signed a three-year MoU to collaborate on VLSI and embedded semiconductor systems, with a focus on R&D and academic interactions to advance the “Make in India” strategy.

Charlie Parker, senior machine learning engineer at Tignis, presented a talk on “Why Every Fab Should Be Using AI.

Penn State and the National Sun Yat-Sen University (NSYSU) in Taiwan partnered to develop educational and research programs focused on semiconductors and photonics.

Rapidus and Hokkaido University partnered on education and research to enhance Japan’s scientific and technological capabilities and develop human resources for the semiconductor industry.

The University of Minnesota named Steve Koester its first “Chief Semiconductor Officer,” and launched a website devoted to semiconductor and microelectronics research and education.

The state of Michigan invested $10 million toward semiconductor workforce development.


Product News

Siemens reported breakthroughs in high-level C++ verification that will be used in conjunction with its Catapult software. Designers will be able to use formal property checking via the Catapult Formal Assert software and reachability coverage analysis through Catapult Formal CoverCheck.

Infineon released several products:

Augmental, an MIT Media Lab spinoff, released a tongue-based computer controller, dubbed the MouthPad.

NVIDIA revealed a new line of products that will form the basis of next-gen AI data centers. Along with partners ASRock Rack, ASUS, GIGABYTE, Ingrasys, and others, the NVIDIA GPUs and networking tech will offer cloud, on-premises, embedded, and edge AI systems. NVIDIA founder and CEO Jensen Huang showed off the company’s upcoming Rubin platform, which will succeed its current Blackwell platform. The new system will feature new GPUs, an Arm-based CPU and advanced networking with NVLink 6, CX9 SuperNIC and X1600 converged InfiniBand/Ethernet switch.

Intel showed off its Xeon 6 processors at Computex 2024. The company also unveiled architectural details for its Lunar Lake client computing processor, which will use 40% less SoC power, as well as a new NPU, and X2 graphic processing unit cores for gaming.


Research

imec released a roadmap for superconducting digital technology to revolutionize AI/ML.

CEA-Leti reported breakthroughs in three projects it considers key to the next generation of CMOS image sensors. The projects involved embedding AI in the CIS and stacking multiple dies to create 3D architectures.

Researchers from MIT’s Computer Science & Artificial Intelligence Laboratory (MIT-CSAIL) used a type of generative AI, known as diffusion models, to train multi-purpose robots, and designed the Grasping Neural Process for more intelligent robotic grasping.

IBM and Pasqal partnered to develop a common approach to quantum-centric supercomputing and to promote application research in chemistry and materials science.

Stanford University and Q-NEXT researchers investigated diamond to find the source of its temperamental nature when it comes to emitting quantum signals.

TU Wien researchers investigated how AI categorizes images.

In Canada:

  • Simon Fraser University received funding of over $80 million from various sources to upgrade the supercomputing facility at the Cedar National Host Site.
  • The Digital Research Alliance of Canada announced $10.28 million to renew the University of Victoria’s Arbutus cloud infrastructure.
  • The Canadian government invested $18.4 million in quantum research at the University of Waterloo.

Events and Further Reading

Find upcoming chip industry events here, including:

Event Date Location
SNUG Europe: Synopsys User Group Jun 10 – 11 Munich
IEEE RAS in Data Centers Summit: Reliability, Availability and Serviceability Jun 11 – 12 Santa Clara, CA
AI for Semiconductors (MEPTEC) Jun 12 – 13 Online
3D & Systems Summit Jun 12 – 14 Dresden, Germany
PCI-SIG Developers Conference Jun 12 – 13 Santa Clara, CA
Standards for Chiplet Design with 3DIC Packaging (Part 1) Jun 14 Online
AI Hardware and Edge AI Summit: Europe Jun 18 – 19 London, UK
Standards for Chiplet Design with 3DIC Packaging (Part 2) Jun 21 Online
DAC 2024 Jun 23 – 27 San Francisco
RISC-V Summit Europe 2024 Jun 24 – 28 Munich
Leti Innovation Days 2024 Jun 25 – 27 Grenoble, France
Find All Upcoming Events Here

Upcoming webinars are here.


Semiconductor Engineering’s latest newsletters:

Automotive, Security and Pervasive Computing
Systems and Design
Low Power-High Performance
Test, Measurement and Analytics
Manufacturing, Packaging and Materials

 

The post Chip Industry Week In Review appeared first on Semiconductor Engineering.

  • ✇Semiconductor Engineering
  • Chip Industry Week In ReviewThe SE Staff
    By Adam Kovac, Karen Heyman, and Liz Allan. India approved the construction of two fabs and a packaging house, for a total investment of about $15.2 billion, according to multiple sources. One fab will be jointly owned by Tata and Taiwan’s Powerchip. The second fab will be a joint investment between CG Power, Japan’s Renesas Electronics, and Thailand’s Stars Microelectronics. Tata will run the packaging facility, as well. India expects these efforts will add 20,000 advanced technology jobs and 6
     

Chip Industry Week In Review

1. Březen 2024 v 09:01

By Adam Kovac, Karen Heyman, and Liz Allan.

India approved the construction of two fabs and a packaging house, for a total investment of about $15.2 billion, according to multiple sources. One fab will be jointly owned by Tata and Taiwan’s Powerchip. The second fab will be a joint investment between CG Power, Japan’s Renesas Electronics, and Thailand’s Stars Microelectronics. Tata will run the packaging facility, as well. India expects these efforts will add 20,000 advanced technology jobs and 60,000 indirect jobs, according to the Times of India. The country has been talking about building a fab for at least the past couple of decades, but funding never materialized.

The U.S. Department of Commerce (DoC) issued a CHIPS Act-based Notice of Funding Opportunity for R&D to establish and accelerate domestic capacity for advanced packaging substrates and substrate materials. The U.S. Secretary of Commerce said the government is prioritizing CHIPS Act funding for projects that will be operational by 2030 and anticipates America will produce 20% of the world’s leading-edge logic chips by the end of the decade.

The top three foundries plan to implement backside power delivery as soon as the 2nm node, setting the stage for faster and more efficient switching in chips, reduced routing congestion, and lower noise across multiple metal layers. But this novel approach to optimizing logic performance depends on advances in lithography, etching, polishing, and bonding processes.

Intel spun out Altera as a standalone FPGA company, the culmination of a rebranding and reorganization of its former Programmable Solutions Group. The move follows Intel’s decision to keep Intel Foundry at arm’s length, with a clean line between the foundry and the company’s processor business.

Multiple new hardware micro-architecture vulnerabilities were published in the latest Common Weakness Enumeration release this week, all related to transient execution (CWE 1420-1423).

The U.S. Office of the National Cyber Director (ONCD) published a technical report calling for the adoption of memory safe programming languages, aiming to reduce the attack surface in cyberspace and anticipate systemic security risk with better diagnostics. The DoC also is seeking information ahead of an inquiry into Chinese-made connected vehicles “to understand the extent of the technology in these cars that can capture wide swaths of data or remotely disable or manipulate connected vehicles.”

Quick links to more news:

Design and Power
Manufacturing and Test
Automotive
Security
Pervasive Computing and AI
Events

Design and Power

Micron began mass production of a new high-bandwidth chip for AI. The company said the HBM3E will be a key component in NVIDIA’s H2000 Tensor Core GPUs, set to begin shipping in the second quarter of 2024. HBM is a key component of 2.5D advanced packages.

Samsung developed a 36GB HBM3E 12H DRAM, saying it sets new records for bandwidth. The company achieved this by using advanced thermal compression non-conductive film, which allowed it to cram 12 layers into the area normally taken up by 8. This is a novel way of increasing DRAM density.

Keysight introduced QuantumPro, a design and simulation tool, plus workflow, for quantum computers. It combines five functionalities into the Advanced Design System (ADS) 2024 platform. Keysight also introduced its AI Data Center Test Platform, which includes pre-packaged benchmarking apps and dataset analysis tools.

Synopsys announced a 1.6T Ethernet IP solution, including 1.6T MAC and PCS Ethernet controllers, 224G Ethernet PHY IP, and verification IP.

Tenstorrent, Japan’s Leading-Edge Semiconductor Technology Center (LSTC) , and Rapidus are co-designing AI chips. LSTC will use Tenstorrent’s RISC-V and Chiplet IP for its forthcoming edge 2nm AI accelerator.

This week’s Systems and Design newsletter features these top stories:

  • 2.5D Integration: Big Chip Or Small PCB: Defining whether a 5D device is a PCB shrunk to fit into a package or a chip that extends beyond the limits of a single die can have significant design consequences.
  • Commercial Chiplets: Challenges of establishing a commercial chiplet.
  • Accellera Preps New Standard For Clock-Domain Crossing: New standard aims to streamline the clock-domain crossing flow.
  • Thinking Big: From Chips To Systems: Aart de Geus discusses the shift from chips to systems, next-generation transistors, and what’s required to build multi-die devices.
  • Integration challenges for RISC-V: Modifying the source code allows for democratization of design, but it adds some hurdles for design teams (video).

Demand for high-end AI servers is driven by four American companies, which will account for 60% of global demand in 2024, according to Trendforce. NVIDIA is projected to continue leading the market, with AMD closing the gap due its lower cost model.

The EU consortium PREVAIL is accepting design proposals as it seeks to develop next-gen edge-AI technologies. Anchors include CEA-Leti, Fraunhofer-Gesellschaft, imec, and VTT, which will use their 300mm fabrication, design, and test facilities to validate prototypes.

Siemens joined an initiative to expand educational opportunities in the semiconductor space around the world. The Semiconductor Education Alliance was launched by Arm in 2023 and focuses on helping teach skills in IC design and EDA.

Q-CTRL announced partnerships with six firms that it says will expand access to its performance-management software and quantum technologies. Wolfram, Aqarios, and qBraid will integrate Q-CTRL’s Fire Opal technology into their products, while Qblox, Keysight, and Quantware will utilize Q-CTRL’s Boulder Opal hardware system.

NTT, Red Hat, NVIDIA, and Fujitsu teamed up to provide data pipeline acceleration and contain orchestration technologies targeted at real-time AI analysis of massive data sets at the edge.

Manufacturing and Test

The U.S. Department of Energy (DOE)’s Office of Electricity launched the American-Made Silicon Carbide (SiC)  Packaging Prize. This $2.25 million contest invites competitors to propose, design, build, and test state-of-the-art SiC semiconductor packaging prototypes.

Applied Materials introduced products and solutions for patterning issues in the “angstrom era,” including line edge roughness, tip-to-tip spacing limitations, bridge defects, and edge placement errors.

imec reported progress made in EUV processes, masks and metrology in preparation for high-NA EUV. It also identified advanced node lithography and etch related processes that contribute the most to direct emissions of CO2, along with proposed solutions.

proteanTecs will participate in the Arm Total Design ecosystem, which now includes more than 20 companies united around a charter to accelerate and simplify the development of custom SoCs based on Arm Neoverse compute subsystems.

NikkeiAsia took an in-depth look at Japan’s semiconductor ecosystem and concluded it is ripe for revival with investments from TSMC, Samsung, and Micron, among others. TrendForce came to a similar conclusion, pointing to the fast pace of Japan’s resurgence, including the opening of TSMC’s fab.

FormFactor closed its sale of its Suzhou and Shanghai companies to Grand Junction Semiconductor for $25M in cash.

The eBeam Initiative celebrated its 15th anniversary and welcomed a new member, FUJIFILM. The group also uncorked its fourth survey of its members technology using deep learning in the photomask-to-wafer manufacturing flow.

Automotive

Apple shuttered its electric car project after 10 years of development. The chaotic effort cost the company billions of dollars, according to The New York Times.

Infineon released new automotive programmable SoCs with fifth-gen human machine interface (HMI) technology, offering improved sensitivity in three packages. The MCU offers up to 84 GPIOs and 384 KB of flash memory. The company also released automotive and industrial-grade 750V G1 discrete SiC MOSFETs aimed at applications such as EV charging, onboard chargers, DC-DC converters, energy, solid state circuit breakers, and data centers.

Cadence expanded its Tensilica IP portfolio to boost computation for automotive sensor fusion applications. Vision, radar, lidar, and AI processing are combined in a single DSP for multi-modal, sensor-based system designs.

Ansys will continue translating fast computing into fast cars, as the company’s partnership with Oracle Red Bull Racing was renewed. The Formula 1 team uses Ansys technology to improve car aerodynamics and ensure the safety of its vehicles.

Lazer Sport adopted Siemens’ Xcelerator portfolio to connect 3D design with 3D printing for prototyping and digital simulation of its sustainable KinetiCore cycling helmet.

The chair of the U.S. Federal Communications Commission (FCC) suggested automakers that sell internet-connected cars should be subject to a telecommunications law aiming to protect domestic violence survivors, reports CNBC. This is due to emerging cases of stalking through vehicle location tracking technology and remote control of functions like locking doors or honking the horn.

BYD‘s CEO said the company does not plan to enter the U.S. market because it is complicated and electrification has slowed down, reports Yahoo Finance. Meanwhile, the first shipment of BYD vehicles arrived in Europe, according to DW News.

Ascent Solar Technologiessolar module products will fly on NASA’s upcoming Lightweight Integrated Solar Array and AnTenna (LISA-T) mission.

Security

Researchers at Texas A&M University and the University of Delaware proposed the first red-team attack on graph neural network (GNN)-based techniques in hardware security.

A panel of four experts discuss mounting concerns over quantum security, auto architectures, and supply chain resiliency.

Synopsys released its ninth annual Open Source Security and Risk Analysis report, finding that 74% of code bases contained high-risk open-source vulnerabilities, up 54% since last year.

President Biden issued an executive order to prevent the large-scale transfer of Americans’ personal data to countries of concern. Types of data include genomic, biometric, personal health, geolocation, financial, and other personally identifiable information, which bad actors can use to track and scam Americans.

The National Institute of Standards and Technology (NIST) released Cybersecurity Framework (CSF) 2.0 to provide a comprehensive view for managing cybersecurity risk.

The EU Agency for Cybersecurity (ENISA) published a study on best practices for cyber crisis management, saying the geopolitical situation continues to impact the cyber threat landscape and planning for threats and incidents is vital for crisis management.

The U.S. Department of Energy (DOE) announced $45 million to protect the energy sector from cyberattacks.

The National Security Agency (NSA), the Federal Bureau of Investigation (FBI), and others published an advisory on Russian cyber actors using compromised routers.  Also the Cybersecurity and Infrastructure Security Agency (CISA), the UK National Cyber Security Centre (NCSC), and partners advised of tactics used by Russian Foreign Intelligence Service cyber actors to gain initial access into a cloud environment.

CISA, the FBI, and the Department of Health and Human Services (HHS) updated an advisory concerning the ALPHV Blackcat ransomware as a service (RaaS), which primarily targets the healthcare sector.

CISA also published a guide to support university cybersecurity clinics and issued other alerts.

Pervasive Computing and AI

Renesas expanded its RZ family of MPUs with a single-chip AI accelerator that offers 10 TOPS per watt power efficiency and delivers AI inference performance of up to 80 TOPS without a cooling fan. The chip is aimed at next-gen robotics with vision AI and real-time control.

Infineon launched dual-phase power modules to help data centers meet the power demands of AI GPU platforms. The company also released a family of solid-state isolators to deliver faster switching with up to 70% lower power dissipation.

Fig. 1: Infineon’s dual phase power modules: Source: Infineon

Amber Semiconductor announced a reference design for brushless motor applications using its AC to DC conversion semiconductor system to power ST‘s STM32 MCUs.

Micron released its universal flash storage (UFS) 4.0 package at just 9×13 mm, built on 232-layer 3D NAND and offering up to 1 terabyte capacity to enable next-gen phone designs and larger batteries.

LG and Meta teamed up to develop extended reality (XR) products, content, services, and platforms within the virtual space.

Microsoft and Mistral AI partnered to accelerate AI innovation and to develop and deploy Mistral’s next-gen large language models (LLMs).

Microsoft’s vice chair and president announced the company’s AI access principles, governing how it will operate AI datacenter infrastructure and other AI assets around the world.

Singtel and VMware partnered to enable enterprises to manage their connectivity and cloud infrastructure through the Singtel Paragon platform for 5G and edge cloud.

Keysight was selected as the Test Partner for the Deutsche Telekom Satellite NB-IoT Early Adopter Program, providing an end-to-end NB-IoT NTN testbed that allows designers and developers to validate reference designs for solutions using 3GPP Release 17 (Rel-17) NTN standards.

Global server shipments are predicted to increase by 2.05% in 2024, with AI servers accounting for about 12%, reports TrendForce. Also, the smartphone camera lens market is expected to rebound in 2024 with 3.8% growth driven by AI-smartphones, to reach about 4.22 billion units, reports TrendForce.

Yole released a smartphone camera comparison report with a focus on iPhone evolution and analysis of the structure, design, and teardown of each camera module, along with the CIS dimensions, technology node, and manufacturing processes.

Counterpoint released a number of 2023 reports on smartphone shipments by country and operator migrations to 5G.

Events

Find upcoming chip industry events here, including:

Event Date Location
International Symposium on FPGAs Mar 3 – 5 Monterey, CA
DVCON: Design & Verification Mar 4 – 7 San Jose, CA
ISES Japan 2024: International Semiconductor Executive Summit Mar 5 – 6 Tokyo, Japan
ISS Industry Strategy Symposium Europe Mar 6 – 8 Vienna, Austria
GSA International Semiconductor Conference Mar 13 – 14 London
Device Packaging Conference (DPC 2024) Mar 18 – 21 Fountain Hills, AZ
GOMACTech Mar 18 – 21 Charleston, South Carolina
SNUG Silicon Valley Mar 20 – 21 Santa Clara, CA
All Upcoming Events

Upcoming webinars are here, including topics such as digital twins, power challenges in data centers, and designing for 112G interface compliance.

Further Reading and Newsletters

Read the latest special reports and top stories, or check out the latest newsletters:

Systems and Design
Low Power-High Performance
Test, Measurement and Analytics
Manufacturing, Packaging and Materials
Automotive, Security and Pervasive Computing

The post Chip Industry Week In Review appeared first on Semiconductor Engineering.

  • ✇IEEE Spectrum
  • What is CMOS 2.0?Samuel K. Moore
    CMOS, the silicon logic technology behind decades and decades of smaller transistors and faster computers, is entering a new phase. CMOS uses two types of transistors in pairs to limit a circuit’s power consumption. In this new phase, “CMOS 2.0,” that part’s not going to change, but how processors and other complex CMOS chips are made will. Julien Ryckaert, vice president of logic technologies at Imec, the Belgium-based nanotechnology research center, told IEEE Spectrum where things are headed
     

What is CMOS 2.0?

26. Únor 2024 v 17:00


CMOS, the silicon logic technology behind decades and decades of smaller transistors and faster computers, is entering a new phase. CMOS uses two types of transistors in pairs to limit a circuit’s power consumption. In this new phase, “CMOS 2.0,” that part’s not going to change, but how processors and other complex CMOS chips are made will. Julien Ryckaert, vice president of logic technologies at Imec, the Belgium-based nanotechnology research center, told IEEE Spectrum where things are headed.

Julien Ryckaert


Julien Ryckaert is vice president of logic technologies at Imec, in Belgium, where he’s been involved in exploring new technologies for 3D chips, among other topics.

Why is CMOS entering a new phase?

Julien Ryckaert: CMOS was the technology answer to build microprocessors in the 1960s. Making things smaller—transistors and interconnects—to make them better worked for 60, 70 years. But that has started to break down.

Why has CMOS scaling been breaking down?

Ryckaert: Over the years, people have made system-on-chips (SoCs)—such as CPUs and GPUs—more and more complex. That is, they have integrated more and more operations onto the same silicon die. That makes sense, because it is so much more efficient to move data on a silicon die than to move it from chip to chip in a computer.

For a long time, the scaling down of CMOS transistors and interconnects made all those operations work better. But now, it’s starting to be difficult to build the whole SoC, to make all of it better by just scaling the device and the interconnect. For example, SRAM [the system’s cache memory] no longer scales as well as logic.

What’s the solution?

Ryckaert: Seeing that something different needs to happen, we at Imec asked: Why do we scale? At the end of the day, Moore’s law is not about delivering smaller transistors and interconnects, it’s about achieving more functionality per unit area.

So what you are starting to see is breaking out certain functions, such as logic and SRAM, building them on separate chiplets using technologies that give each the best advantage, and then reintegrating them using advanced 3D packaging technologies. You can connect two functions that are built on the different substrates and achieve an efficiency in communication between those two functions that is competitive with how efficient they were when the two functions were on the same substrate. This is an evolution to what we call smart disintegration, or system technology co-optimization.

So is that CMOS 2.0?

Ryckaert: What we’re doing in CMOS 2.0 is pushing that idea further, with much finer-grained disintegration of functions and stacking of many more dies. A first sign of CMOS 2.0 is the imminent arrival of backside-power-delivery networks. On chips today, all interconnects—both those carrying data and those delivering power—are on the front side of the silicon [above the transistors]. Those two types of interconnect have different functions and different requirements, but they have had to exist in a compromise until now. Backside power moves the power-delivery interconnects to beneath the silicon, essentially turning the die into an active transistor layer which is sandwiched between two interconnect stacks, each stack having a different functionality.

Will transistors and interconnects still have to keep scaling in CMOS 2.0?

Ryckaert: Yes, because somewhere in that stack, you will still have a layer that still needs more transistors per unit area. But now, because you have removed all the other constraints that it once had, you are letting that layer nicely scale with the technology that is perfectly suited for it. I see fascinating times ahead.

This article appears in the March print issue as “5 Questions for Julien Ryckaert.”

  • ✇Semiconductor Engineering
  • Building CFETs With Monolithic And Sequential 3DKatherine Derbyshire
    Successive versions of vertical transistors are emerging as the likely successor to finFETs, combining lower leakage with significant area reduction. A stacked nanosheet transistor, introduced at N3, uses multiple channel layers to maintain the overall channel length and necessary drive current while continuing to reduce the standard cell footprint. The follow-on technology, the CFET, pushes further up the z axis, stacking n-channel and p-channel transistors on top of each other, rather than sid
     

Building CFETs With Monolithic And Sequential 3D

Successive versions of vertical transistors are emerging as the likely successor to finFETs, combining lower leakage with significant area reduction.

A stacked nanosheet transistor, introduced at N3, uses multiple channel layers to maintain the overall channel length and necessary drive current while continuing to reduce the standard cell footprint. The follow-on technology, the CFET, pushes further up the z axis, stacking n-channel and p-channel transistors on top of each other, rather than side by side.

In work presented at December’s IEEE Electron Device Meeting, researchers at TSMC estimated that CFETs give a 1.5X to 2X overall size reduction at constant gate dimensions. [1] Those are significant area benefits for any digital logic, but manufacturing these new transistor structures will be a challenge.

Monolithic 3D integration is the simplest integration scheme, and the one likely to see production first. In monolithic 3D integration, the entire structure is assembled on a single piece of silicon. This approach can also be used to fabricate compute-in-memory designs where memory devices are fabricated as part of the metallization layers for a conventional CMOS circuit. While individual layers in monolithic 3D designs can incorporate new technologies — the integration of ReRAM devices, for example — the overall CMOS flow is preserved. All of the materials and processes used must be compatible with that rubric.

Adding more nanosheets for complementary devices
The overall process in this kind of scheme is similar to a stacked nanosheet transistor flow. It starts with a stack of eight or more alternating silicon and silicon germanium layers (four pairs), compared to a stacked nanosheet NFET or PFET, which might have only four such layers (two pairs). In a CFET flow, however, middle dielectric layer is inserted halfway through the stack.

This layer, separating the n-type and p-type transistors, is probably the most important difference from a standard nanosheet transistor flow. To minimize parasitic capacitance, the middle dielectric layer should be as thin as possible, said imec’s Naoto Horiguchi. If it’s too thin, though, edge placement errors can cause isolation failures, landing contacts for the top devices onto bottom devices. [2]

In TSMC’s process, the Si/SiGe superlattice includes a high-germanium SiGe layer as a placeholder for the middle dielectric. After the source/drain etch, a highly selective etch removes this layer and oxidizes the silicon on either side of it to form the middle dielectric.

The inner spacer recess etch, which follows middle dielectric formation in the TSMC process, indents the SiGe layers relative to the silicon nanosheets, defining the gate length and junction overlap.

While TSMC emphasized it has not yet made fully metallized integrated CFET circuits, it did report that more than 90% of the transistors survived.

Fig. 1: TSMC used monolithic integration to stack NFET and PFET devices. [1]
Fig. 1: TSMC used monolithic integration to stack NFET and PFET devices. [1]

Depositing the nanosheet stack is straightforward. Etching it with the precision required is not. A less-than-vertical etch profile will change the relative channel lengths of the top and bottom devices, leading to asymmetric switching characteristics.

Stacking wafers for more flexibility
The alternative, sequential 3D integration is a bit more flexible. While monolithic 3D integration uses a single device layer, sequential 3D integration bonds an additional tier on top of the first. Sequential 3D integration is different from three-dimensional wafer-level packaging and chip stacking, though. In WLP, the component devices are finished, passivated, and tested. The component chips are fully functional as independent circuits. In sequential 3D integration, the two tiers are part of a single integrated circuit.

Often, though not always, the second tier is an unprocessed bare wafer with no devices at all. Ionut Radu, director of research and external collaborations at Soitec, said his company used its SmartCut process to transfer sub-micron silicon layers. [3] One of the advantages of sequential integration, though, is that it opens the door to other possibilities. For example, the second layer could use a different silicon lattice orientation to facilitate stress engineering for improved carrier mobility. It also could use an alternative channel material, such as GaAs or a two-dimensional semiconductor. And up until the transfer occurs, processing of the second wafer has no effect on the thermal budget of the first.

After bonding, the second tier’s process temperature generally must remain below 500° C. Tadeu Mota-Frutuoso, process integration engineer at CEA-Leti, said researchers were able to achieve this benchmark in a conventional CMOS process by using laser annealing for the source/drain activation steps. [4]

While sequential 3D integration can be used to realize CFET devices, the top layers also can contain independent circuitry. Still, as in monolithic integration, the dielectric layer between the two circuit tiers is a critical process step. Analysts at KAIST found that reducing the thickness of the interlayer dielectric improves heat dissipation. It also facilitates the use of a bottom gate to control the top tier devices. On the other hand, the dielectric layer lies at the interface between the original wafer and the transferred layer. Thickness control depends on the polishing step used to prepare the transfer surface. Such precise control is extremely challenging for CMP. [5]

Re-driving wafers without contamination
While the second circuit tier can be added at any point in the process flow, the insertion point constrains not only the first and second tier devices, but also the fab as a whole. When the second layer does not yet contain devices, alignment to the first layer is relatively easy. In contrast, Horiguchi said, aligning one device wafer on top of another imposes an area penalty to accommodate potential overlay error. The total device thickness of sequential 3D structures tends to be greater, as well.

Returning a first-tier wafer with contacts and other metallization to FEOL tools for fabrication of a second transistor layer poses a substantial cross contamination risk. Even if the top surface is well encapsulated, Mota-Frutuoso explained in an interview that the sidewalls and bevels of the bottom tier can still expose metal layers to FEOL processes. CEA-Leti’s proposed bevel contamination wrap (BCW) scheme first cleans the wafer edge, then encapsulates it and the sidewall in a protective oxide layer.

"Fig.

Fig. 2: CEA-Leti’s sequential 3D integration stacked silicon CMOS on an industrial 28nm FDSOI wafer. [4]

Controlling heat dissipation
Heat dissipation is a major challenge for both monolithic and sequential 3D devices. Generalizations are difficult because thermal characteristics depend on the specific integration scheme and even the circuit design. Wei-Yen Woon, senior manager at TSMC, and his colleagues evaluated AlN and diamond as possible thermal dissipation layers. While both have been used in power devices, they are new to CMOS process flows. They achieved good quality columnar AlN films with a low temperature sputtering process, though the columnar structure did impede in-plane heat transport. While diamond offers extremely high thermal conductivity, it also can require extremely high process temperatures. The TSMC group deposited thin films with acceptable quality at BEOL compatible temperatures by using pre-deposited diamond nuclei, but they have not yet attempted to integrate these films with working devices.[6]

What’s next?
In the short term, monolithic 3D integration offers a relatively straightforward path to CFET fabrication, building on existing nanosheet transistor process flows. Even proponents of sequential 3D integration expect the monolithic approach to reach production first. For the longer term, though, the ability to use a completely different material for the second device layer gives device designers many more process optimization knobs.

However it is achieved, the idea that active devices no longer need to confine themselves to a single planar layer has implications far beyond logic transistors. From compute-in-memory modules to image sensors, 3D integration is an important tool for “More than Moore” devices.

References

[1] S. Liao et al., “Complementary Field-Effect Transistor (CFET) Demonstration at 48nm Gate Pitch for Future Logic Technology Scaling,” 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2023, pp. 1-4, doi: 10.1109/IEDM45741.2023.10413672.

[2] N. Horiguchi et al., “3D Stacked Devices and MOL Innovations for Post-Nanosheet CMOS Scaling,” 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2023, pp. 1-4, doi: 10.1109/IEDM45741.2023.10413701.

[3] I. Radu et al., “Ultimate Layer Stacking Technology for High Density Sequential 3D Integration,” 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2023, pp. 1-4, doi: 10.1109/IEDM45741.2023.10413807.

[4] T. Mota-Frutuoso et al., “3D sequential integration with Si CMOS stacked on 28nm industrial FDSOI with Cu-ULK iBEOL featuring RO and HDR pixel,” 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2023, pp. 1-4, doi: 10.1109/IEDM45741.2023.10413864.

[5] S. K. Kim et al., “Role of Inter-Layer Dielectric on the Electrical and Heat Dissipation Characteristics in the Heterogeneous 3D Sequential CFETs with Ge p-FETs on Si n-FETs,” 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2023, pp. 1-4, doi: 10.1109/IEDM45741.2023.10413845.

[6] W. Y. Woon et al., “Thermal dissipation in stacked devices,” 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2023, pp. 1-4, doi: 10.1109/IEDM45741.2023.10413721.

 

The post Building CFETs With Monolithic And Sequential 3D appeared first on Semiconductor Engineering.

❌
❌