FreshRSS

Normální zobrazení

Jsou dostupné nové články, klikněte pro obnovení stránky.
PředevčíremHlavní kanál
  • ✇Semiconductor Engineering
  • Chip Industry Week In ReviewThe SE Staff
    Rapidus and IBM are jointly developing mass production capabilities for chiplet-based advanced packages. The collaboration builds on an existing agreement to develop 2nm process technology. Vanguard and NXP will jointly establish VisionPower Semiconductor Manufacturing Company (VSMC) in Singapore to build a $7.8 billion, 12-inch wafer plant. This is part of a global supply chain shift “Out of China, Out of Taiwan,” according to TrendForce. Alphawave joined forces with Arm to develop an advanced
     

Chip Industry Week In Review

7. Červen 2024 v 09:01

Rapidus and IBM are jointly developing mass production capabilities for chiplet-based advanced packages. The collaboration builds on an existing agreement to develop 2nm process technology.

Vanguard and NXP will jointly establish VisionPower Semiconductor Manufacturing Company (VSMC) in Singapore to build a $7.8 billion, 12-inch wafer plant. This is part of a global supply chain shift “Out of China, Out of Taiwan,” according to TrendForce.

Alphawave joined forces with Arm to develop an advanced chiplet based on Arm’s Neoverse Compute Subystems for AI/ML. The chiplet contains the Neoverse N3 CPU core cluster and Arm Coherent Mesh Network, and will be targeted at HPC in data centers, AI/ML applications, and 5G/6G infrastructure.

ElevATE Semiconductor and GlobalFoundries will partner for high-voltage chips to be produced at GF’s facility in Essex Junction, Vermont, which GF bought from IBM. The chips are essential for semiconductor testing equipment, aerospace, and defense systems.

NVIDIA, OpenAI, and Microsoft are under investigation by the U.S. Federal Trade Commission and Justice Department for violation of antitrust laws in the generative AI industry, according to the New York Times.

Quick links to more news:

Market Reports
Global
In-Depth
Education and Training
Security
Product News
Research
Events and Further Reading


Global

Apollo Global Management will invest $11 billion in Intel’s Fab 34 in Ireland, thereby acquiring a 49% stake in Intel’s Irish manufacturing operations.

imec and ASML opened their jointly run High-NA EUV Lithography Lab in Veldhoven, the Netherlands. The lab will be used to prepare  the next-generation litho for high-volume manufacturing, expected to begin in 2025 or 2026.

Expedera opened a new semiconductor IP design center in India. The location, the sixth of its kind for the company, is aimed at helping to make up for a shortfall in trained technicians, researchers, and engineers in the semiconductor sector.

Foxconn will build an advanced computing center in Taiwan with NVIDIA’s Blackwell platform at its core. The site will feature GB200 servers, which consist of 64 racks and 4,608 GPUs, and will be completed by 2026.

Intel and its 14 partner companies in Japan will use Sharp‘s LCD plants to research semiconductor production technology, a cost reduction move that should also produce income for Sharp, according to Nikkei Asia.

Japan is considering legislation to support the commercial production of advanced semiconductors, per Reuters.

Saudi Arabia aims to establish at least 50 semiconductor design companies as part of a new National Semiconductor Hub, funded with over $266 million.

Air Liquide is opening a new industrial gas production facility in Idaho, which will produce ultra-pure nitrogen and other gases for Micron’s new fab.

Microsoft will invest 33.7 billion Swedish crowns ($3.2 billion) to expand its cloud and AI infrastructure in Sweden over a two-year period, reports Bloomberg. The company also will invest $1 billion to establish a new data center in northwest Indiana.

AI data centers could consume as much as 9.1% of the electricity generated in the U.S. by 2030, according to a white paper published by the Electric Power Research Institute. That would more than double the electricity currently consumed by data centers, though EPRI notes this is a worst case scenario and advances in efficiency could be a mitigating factor.


Markets and Money

The Semiconductor Industry Association (SIA) announced global semiconductor sales increased 15.8% year-over-year in April, and the group projected a market growth of 16% in 2024. Conversely, global semiconductor equipment billings contracted 2% year-over-year to US$26.4 billion in Q1 2024, while quarter-over-quarter billings dropped 6% during the same period, according to SEMI‘s Worldwide Semiconductor Equipment Market Statistics (WWSEMS) Report.

Cadence completed its acquisition of BETA CAE Systems International, a provider of multi-domain, engineering simulation solutions.

Cisco‘s investment arm launched a $1 billion fund to aid AI startups as part of its AI innovation strategy. Nearly $200 million has already been earmarked.

The power and RF GaN markets will grow beyond US$2.45 billion and US$1.9 billion in 2029, respectively, according to Yole, which is offering a webinar on the topic.

The micro LED chip market is predicted to reach $580 million by 2028, driven by head-mounted devices and automotive applications, according to TrendForce. The cost of Micro LED chips may eventually come down due to size miniaturization.


In-Depth

Semiconductor Engineering published its Automotive, Security, and Pervasive Computing newsletter this week, featuring these top stories:

More reporting this week:


Security

Scott Best, Rambus senior director of Silicon Security Products, delivered a keynote at the Hardwear.io conference this week (below), detailing a $60 billion reverse engineering threat for hardware in just three markets — $30 billion for printer consumables, $20 billion for rechargeable batteries with some type of authentication, and $10 billion for medical devices such as sonogram probes.


Photo source: Ed Sperling/Semiconductor Engineering

wolfSSL debuted wolfHSM for automotive hardware security modules, with its cryptographic library ported to run in automotive HSMs like Infineon’s Aurix Tricore TC3XX.

Cisco integrated AMD Pensando data processing units (DPUs) with its Hypershield security architecture for defending AI-scale data centers.

OMNIVISION released an intelligent CMOS image sensor for human presence detection, infrared facial authentication, and always-on technology with a single sensing camera. And two new image sensors for industrial and consumer security surveillance cameras.

Digital Catapult announced a new cohort of companies will join Digital Security by Design’s Technology Access Program, gaining access to an Arm Morello prototype evaluation hardware kit based on Capability Hardware Enhanced RISC Instructions (CHERI), to find applications across critical UK sectors.

University of Southampton researchers used formal verification to evaluate the hardware reliability of a RISC-V ibex core in the presence of soft errors.

Several institutions published their students’ master’s and PhD work:

  • Virginia Tech published a dissertation proposing sPACtre, a defense mechanism that aims to prevent Spectre control-flow attacks on existing hardware.
  • Wright State University published a thesis proposing an approach that uses various machine learning models to bring an improvement in hardware Trojan identification with power signal side channel analysis
  • Wright State University published a thesis examining the effect of aging on the reliability of SRAM PUFs used for secure and trusted microelectronics IC applications.
  • Nanyang Technological University published a Final Year Project proposing a novel SAT-based circuit preprocessing attack based on the concept of logic cones to enhance the efficacy of SAT attacks on complex circuits like multipliers.

The Cybersecurity and Infrastructure Security Agency (CISA) issued a number of alerts/advisories.


Education and Training

Renesas and the Indian Institute of Technology Hyderabad (IIT Hyderabad) signed a three-year MoU to collaborate on VLSI and embedded semiconductor systems, with a focus on R&D and academic interactions to advance the “Make in India” strategy.

Charlie Parker, senior machine learning engineer at Tignis, presented a talk on “Why Every Fab Should Be Using AI.

Penn State and the National Sun Yat-Sen University (NSYSU) in Taiwan partnered to develop educational and research programs focused on semiconductors and photonics.

Rapidus and Hokkaido University partnered on education and research to enhance Japan’s scientific and technological capabilities and develop human resources for the semiconductor industry.

The University of Minnesota named Steve Koester its first “Chief Semiconductor Officer,” and launched a website devoted to semiconductor and microelectronics research and education.

The state of Michigan invested $10 million toward semiconductor workforce development.


Product News

Siemens reported breakthroughs in high-level C++ verification that will be used in conjunction with its Catapult software. Designers will be able to use formal property checking via the Catapult Formal Assert software and reachability coverage analysis through Catapult Formal CoverCheck.

Infineon released several products:

Augmental, an MIT Media Lab spinoff, released a tongue-based computer controller, dubbed the MouthPad.

NVIDIA revealed a new line of products that will form the basis of next-gen AI data centers. Along with partners ASRock Rack, ASUS, GIGABYTE, Ingrasys, and others, the NVIDIA GPUs and networking tech will offer cloud, on-premises, embedded, and edge AI systems. NVIDIA founder and CEO Jensen Huang showed off the company’s upcoming Rubin platform, which will succeed its current Blackwell platform. The new system will feature new GPUs, an Arm-based CPU and advanced networking with NVLink 6, CX9 SuperNIC and X1600 converged InfiniBand/Ethernet switch.

Intel showed off its Xeon 6 processors at Computex 2024. The company also unveiled architectural details for its Lunar Lake client computing processor, which will use 40% less SoC power, as well as a new NPU, and X2 graphic processing unit cores for gaming.


Research

imec released a roadmap for superconducting digital technology to revolutionize AI/ML.

CEA-Leti reported breakthroughs in three projects it considers key to the next generation of CMOS image sensors. The projects involved embedding AI in the CIS and stacking multiple dies to create 3D architectures.

Researchers from MIT’s Computer Science & Artificial Intelligence Laboratory (MIT-CSAIL) used a type of generative AI, known as diffusion models, to train multi-purpose robots, and designed the Grasping Neural Process for more intelligent robotic grasping.

IBM and Pasqal partnered to develop a common approach to quantum-centric supercomputing and to promote application research in chemistry and materials science.

Stanford University and Q-NEXT researchers investigated diamond to find the source of its temperamental nature when it comes to emitting quantum signals.

TU Wien researchers investigated how AI categorizes images.

In Canada:

  • Simon Fraser University received funding of over $80 million from various sources to upgrade the supercomputing facility at the Cedar National Host Site.
  • The Digital Research Alliance of Canada announced $10.28 million to renew the University of Victoria’s Arbutus cloud infrastructure.
  • The Canadian government invested $18.4 million in quantum research at the University of Waterloo.

Events and Further Reading

Find upcoming chip industry events here, including:

Event Date Location
SNUG Europe: Synopsys User Group Jun 10 – 11 Munich
IEEE RAS in Data Centers Summit: Reliability, Availability and Serviceability Jun 11 – 12 Santa Clara, CA
AI for Semiconductors (MEPTEC) Jun 12 – 13 Online
3D & Systems Summit Jun 12 – 14 Dresden, Germany
PCI-SIG Developers Conference Jun 12 – 13 Santa Clara, CA
Standards for Chiplet Design with 3DIC Packaging (Part 1) Jun 14 Online
AI Hardware and Edge AI Summit: Europe Jun 18 – 19 London, UK
Standards for Chiplet Design with 3DIC Packaging (Part 2) Jun 21 Online
DAC 2024 Jun 23 – 27 San Francisco
RISC-V Summit Europe 2024 Jun 24 – 28 Munich
Leti Innovation Days 2024 Jun 25 – 27 Grenoble, France
Find All Upcoming Events Here

Upcoming webinars are here.


Semiconductor Engineering’s latest newsletters:

Automotive, Security and Pervasive Computing
Systems and Design
Low Power-High Performance
Test, Measurement and Analytics
Manufacturing, Packaging and Materials

 

The post Chip Industry Week In Review appeared first on Semiconductor Engineering.

  • ✇Semiconductor Engineering
  • Vision Is Why LLMs Matter On The EdgeBen Gomes
    Large Language Models (LLMs) have taken the world by storm since the 2017 Transformers paper, but pushing them to the edge has proved problematic. Just this year, Google had to revise its plans to roll out Gemini Nano on all new Pixel models — the down-spec’d hardware options proved unable to host the model as part of a positive user experience. But the implementation of language-focused models at the edge is perhaps the wrong metric to look at. If you are forced to host a language-focused model
     

Vision Is Why LLMs Matter On The Edge

Od: Ben Gomes
30. Květen 2024 v 09:05

Large Language Models (LLMs) have taken the world by storm since the 2017 Transformers paper, but pushing them to the edge has proved problematic. Just this year, Google had to revise its plans to roll out Gemini Nano on all new Pixel models — the down-spec’d hardware options proved unable to host the model as part of a positive user experience. But the implementation of language-focused models at the edge is perhaps the wrong metric to look at. If you are forced to host a language-focused model for your phone or car in the cloud, that may be acceptable as an intermediate step in development. Vision applications of AI, on the other hand, are not so flexible: many of them rely on low latency and high dependability. If a vehicle relies on AI to identify that it should not hit the obstacle in front of it, a blip in contacting the server can be fatal. Accordingly, the most important LLMs to fit on the edge are vision models — the models whose purpose is most undermined by the reliance on remote resources.

“Large Language Models” can be an imprecise term, so it is worth defining. The original 2017 Transformer LLM that many see as kickstarting the AI rush was 215 million parameters. BERT was giant for its time (2018) at 335 million parameters. Both of these models might be relabeled as “Small Language Models” by some today to distinguish from models like GPT4 and Gemini Ultra with as much as 1.7 trillion parameters, but for the purposes here, all fall under the LLM category. All of these are language models though, so why does it matter for vision? The trick here is that language is an abstract system of deriving meaning from a structured ordering of arbitrary objects. There is no “correct” association of meaning and form in language which we could base these models on. Accordingly, these arbitrary units are substitutable — nothing forces architecture developed for language to only be applied to language, and all the language objects are converted to multidimensional vectors anyway. LLM architecture is thus highly generalizable, and typically retains the core strength from having been developed for language: a strong ability to carry through semantic information. Thus, when we talk about LLMs at the edge, it can be a language model cross-trained on image data, or it might be a vision-only model which is built on the foundation of technology designed for language. At the software and hardware levels, for bringing models to the edge, this distinction makes little difference.

Vision LLMs on the edge flexibly apply across many different use cases, but key applications where they show the greatest advantages are: embodied agents (an especially striking example of the benefits of cross-training embodied agents on language data can be seen with Dynalang’s advantages over DreamerV3 in interpreting the world due to superior semantic parsing), inpainting (as seen with the latent diffusion models), LINGO-2’s decision-making abilities in self-driving vehicles, context-aware security (such as ViViT), information extraction (Gemini’s ability to find and report data from video), and user assistance (physician aids, driver assist, etc). Specifically notable and exciting here is the ability for Vision LLMs to leverage language as a lossy storage and abstraction of visual data for decision-making algorithms to then interact with — especially as seen in LINGO-2 and Dynalang. Many of these vision-oriented LLMs depend on edge deployment to realize their value, and they benefit from the work that has already been done for optimizing language-oriented LLMs. Despite this, vision LLMs are still struggling for edge deployment just as the language-oriented models are. The improvements for edge deployments come in three classes: model architecture, system resource utilization, and hardware optimization. We will briefly review the first two and look more closely at the third since it often gets the least attention.

Model architecture optimizations include the optimizations that must be made at the model level: “distilling” models to create leaner imitators, restructuring where models spend their resource budget (such as the redistribution of transformer modules in Stable Diffusion XL) and pursuing alternate architectures (state-space models, H3 modules, etc.) to escape the quadratically scaling costs of transformers.

System resource optimizations are all the things that can be done in software to an already complete model. Quantization (to INT8, INT4, or even INT2) is a common focus here for both latency and memory burden, but of course compromises accuracy. Speculative decoding can improve utilization and latency. And of course, tiling, such as seen with FlashAttention, has become near-ubiquitous for improving utilization and latency.

Finally, there are hardware optimizations. The first option here is a general-purpose GPU, TPU, NPU or similar, but those tend to be best suited for settings where capability is needed without demanding streamlined optimization such as might be the case on a home computer. Custom hardware, such as purpose-built NPUs, generally has the advantage when the application is especially sensitive to latency or resource consumption, and this covers much of the applications for vision LLMs.

Exploring this trade-off further: Stable Diffusion’s architecture and resource demands have been discussed here before, but it is worth circling back to it as an example of why hardware solutions are so important in this space. Using Stable Diffusion 1.5 for simplicity, let us focus specifically on the U-Net component of the model. In this diagram, you can see the rough construction of the model: it downsamples repeatedly on the left until it hits the bottom of the U, and then upsamples up the right side, bringing back in residual connections from the left at each stage.

This U-Net implementation has 865 million parameters and entails 750 billion operations. The parameters are a fair proxy for the memory burden, and the operations are a direct representation of the compute demands. The distribution of these burdens on resources is not even however. If we plot the parameters and operations for each layer, a clear picture emerges:

These graphs show a model that is destined for gross inefficiencies at every step. Most of the memory burden peaks in the center, whereas the compute is heavily taxed at the two tails but underutilized in the center. These inefficiencies come with costs. The memory peak can overwhelm on-chip storage, thus incurring I/O operations, or else requiring a large excess of unused memory for most of the graph. Similarly, storing residuals for later incurs I/O latency and higher power draws. The underutilization of the compute power at the center of the graph means that the processor will have wasteful power draw as it cannot use the tail of the power curve as it does sparser operations. While software interventions can also help here, this is exactly the kind of problem that custom hardware solutions are meant to address. Custom silicon tailored to the model can let you offload some of that memory burden into additional compute cycles at the center of the graph without incurring extra I/O operations by recomputing the residual connections instead of kicking them out to memory. In doing so, the total required memory drops, and the processor can remain at full utilization. Rightsizing the resource allotment and finding ways to redistribute the burdens are key components to how these models can be best deployed at the edge.

Despite their name, LLMs are important to the vision domain for their flexibility in handling different inputs and their strength at interpreting meaning in images. Whether used for embodied agents, context-aware security, or user assistance, their use at the edge requires a dependable low latency which precludes cloud-based solutions, in contrast to other AI applications on edge devices. Bringing them successfully to the edge asks for optimizations at every level, and we have seen already some of the possibilities at the hardware level. Conveniently, the common architecture with language-oriented LLMs means that many of the solutions needed to bring these most essential models to the edge in turn may also generalize back to the language-oriented models which donated the architecture in the first place.

The post Vision Is Why LLMs Matter On The Edge appeared first on Semiconductor Engineering.

  • ✇Semiconductor Engineering
  • Will Domain-Specific ICs Become Ubiquitous?Brian Bailey
    Questions are surfacing for all types of design, ranging from small microcontrollers to leading-edge chips, over whether domain-specific design will become ubiquitous, or whether it will fall into the historic pattern of customization first, followed by lower-cost, general-purpose components. Custom hardware always has been a double-edged sword. It can provide a competitive edge for chipmakers, but often requires more time to design, verify, and manufacture a chip, which can sometimes cost a mar
     

Will Domain-Specific ICs Become Ubiquitous?

16. Květen 2024 v 09:05

Questions are surfacing for all types of design, ranging from small microcontrollers to leading-edge chips, over whether domain-specific design will become ubiquitous, or whether it will fall into the historic pattern of customization first, followed by lower-cost, general-purpose components.

Custom hardware always has been a double-edged sword. It can provide a competitive edge for chipmakers, but often requires more time to design, verify, and manufacture a chip, which can sometimes cost a market window. In addition, it’s often too expensive for all but the most price-resilient applications. This is a well-understood equation at the leading edge of design, particularly where new technologies such as generative AI are involved.

But with planar scaling coming to an end, and with more features tailored to specific domains, the chip industry is struggling to figure out whether the business/technical equation is undergoing a fundamental and more permanent change. This is muddied further by the fact that some 30% to 35% of all design tools today are being sold to large systems companies for chips that will never be sold commercially. In those applications, the collective savings from improved performance per watt may dwarf the cost of designing, verifying, and manufacturing a highly optimized multi-chip/multi-chiplet package across a large data center, leaving the debate about custom vs. general-purpose more uncertain than ever.

“If you go high enough in the engineering organization, you’re going to find that what people really want to do is a software-defined whatever it is,” says Russell Klein, program director for high-level synthesis at Siemens EDA. “What they really want to do is buy off-the-shelf hardware, put some software on it, make that their value-add, and ship that. That paradigm is breaking down in a number of domains. It is breaking down where we need either extremely high performance, or we need extreme efficiency. If we need higher performance than we can get from that off-the-shelf system, or we need greater efficiency, we need the battery to last longer, or we just can’t burn as much power, then we’ve got to start customizing the hardware.”

Even the selection of processing units can make a solution custom. “Domain-specific computing is already ubiquitous,” says Dave Fick, CEO and cofounder of Mythic. “Modern computers, whether in a laptop, phone, security camera, or in farm equipment, consist of a mix of hardware blocks co-optimized with software. For instance, it is common for a computer to have video encode or decode hardware units to allow a system to connect to a camera efficiently. It is common to have accelerators for encryption so that we can safely communicate. Each of these is co-optimized with software algorithms to make commonly used functions highly efficient and flexible.”

Steve Roddy, chief marketing officer at Quadric, agrees. “Heterogeneous processing in SoCs has been de rigueur in the vast majority of consumer applications for the past two decades or more.  SoCs for mobile phones, tablets, televisions, and automotive applications have long been required to meet a grueling combination of high-performance plus low-cost requirements, which has led to the proliferation of function-specific processors found in those systems today.  Even low-cost SoCs for mobile phones today have CPUs for running Android, complex GPUs to paint the display screen, audio DSPs for offloading audio playback in a low-power mode, video DSPs paired with NPUs in the camera subsystem to improve image capture (stabilization, filters, enhancement), baseband DSPs — often with attached NPUs — for high speed communications channel processing in the Wi-Fi and 5G subsystems, sensor hub fusion DSPs, and even power-management processors that maximize battery life.”

It helps to separate what you call general-purpose and what is application-specific. “There is so much benefit to be had from running your software on dedicated hardware, what we call bespoke silicon, because it gives you an advantage over your competitors,” says Marc Swinnen, director of product marketing in Ansys’ Semiconductor Division. “Your software runs faster, lower power, and is designed to run specifically what you want to run. It’s hard for a competitor with off-the-shelf hardware to compete with you. Silicon has become so central to the business value, the business model, of many companies that it has become important to have that optimized.”

There is a balance, however. “If there is any cost justification in terms of return on investment and deployment costs, power costs, thermal costs, cooling costs, then it always makes sense to build a custom ASIC,” says Sharad Chole, chief scientist and co-founder of Expedera. “We saw that for cryptocurrency, we see that right now for AI. We saw that for edge computing, which requires extremely ultra-low power sensors and ultra-low power processes. But there also has been a push for general-purpose computing hardware, because then you can easily make the applications more abstract and scalable.”

Part of the seeming conflict is due to the scope of specificity. “When you look at the architecture, it’s really the scope that determines the application specificity,” says Frank Schirrmeister, vice president of solutions and business development at Arteris. “Domain-specific computing is ubiquitous now. The important part is the constant moving up of the domain specificity to something more complex — from the original IP, to configurable IP, to subsystems that are configurable.”

In the past, it has been driven more by economics. “There’s an ebb and a flow to it,” says Paul Karazuba, vice president of marketing at Expedera. “There’s an ebb and a flow to putting everything into a processor. There’s an ebb and a flow to having co-processors, augmenting functions that are inside of that main processor. It’s a natural evolution of pretty much everything. It may not necessarily be cheaper to design your own silicon, but it may be more expensive in the long run to not design your own silicon.”

An attempt to formalize that ebb and flow was made by Tsugio Makimoto in the 1990s, when he was Sony’s CTO. He observed that electronics cycled between custom solutions and programmable ones approximately every 10 years. What’s changed is that most custom chips from the time of his observation contained highly programmable standard components.

Technology drivers
Today, it would appear that technical issues will decide this. “The industry has managed to work around power issues and push up the thermal envelope beyond points I personally thought were going to be reasonable, or feasible,” says Elad Alon, co-founder and CEO of Blue Cheetah. “We’re hitting that power limit, and when you hit the power limit it drives you toward customization wherever you can do it. But obviously, there is tension between flexibility, scalability, and applicability to the broadest market possible. This is seen in the fast pace of innovation in the AI software world, where tomorrow there could be an entirely different algorithm, and that throws out almost all the customizations one may have done.”

The slowing of Moore’s Law will have a fundamental influence on the balance point. “There have been a number of bespoke silicon companies in the past that were successful for a short period of time, but then failed,” says Ansys’ Swinnen. “They had made some kind of advance, be it architectural or addressing a new market need, but then the general-purpose chips caught up. That is because there’s so much investment in them, and there’s so many people using them, there’s an entire army of people advancing, versus your company, just your team, that’s advancing your bespoke solution. Inevitably, sooner or later, they bypass you and the general-purpose hardware just gets better than the specific one. Right now, the pendulum has swung toward custom solutions being the winner.”

However, general-purpose processors do not automatically advance if companies don’t keep up with adoption of the latest nodes, and that leads to even more opportunities. “When adding accelerators to a general-purpose processor starts to break down, because you want to go faster or become more efficient, you start to create truly customized implementations,” says Siemens’ Klein. “That’s where high-level synthesis starts to become really interesting, because you’ve got that software-defined implementation as your starting point. We can take it through high-level synthesis (HLS) and build an accelerator that’s going to do that one specific thing. We could leave a bunch of registers to define its behavior, or we can just hard code everything. The less general that system is, the more specific it is, usually the higher performance and the greater efficiency that we’re going to take away from it. And it almost always is going to be able to beat a general-purpose accelerator or certainly a general-purpose processor in terms of both performance and efficiency.”

At the same time, IP has become massively configurable. “There used to be IP as the building blocks,” says Arteris’ Schirrmeister. “Since then, the industry has produced much larger and more complex IP that takes on the role of sub-systems, and that’s where scope comes in. We have seen Arm with what they call the compute sub-systems (CSS), which are an integration and then hardened. People care about the chip as a whole, and then the chip and the system context with all that software. Application specificity has become ubiquitous in the IP space. You either build hard cores, you use a configurable core, or you use high-level synthesis. All of them are, by definition, application-specific, and the configurability plays in there.”

Put in perspective, there is more than one way to build a device, and an increasing number of options for getting it done. “There’s a really large market for specialized computing around some algorithm,” says Klein. “IP for that is going to be both in the form of discrete chips, as well as IP that could be built into something. Ultimately, that has to become silicon. It’s got to be hardened to some degree. They can set some parameters and bake it into somebody’s design. Consider an Arm processor. I can configure how many CPUs I want, I can configure how big I want the caches, and then I can go bake that into a specific implementation. That’s going to be the thing that I build, and it’s going to be more targeted. It will have better efficiency and a better cost profile and a better power profile for the thing that I’m doing. Somebody else can take it and configure it a little bit differently. And to the degree that the IP works, that’s a great solution. But there will always be algorithms that don’t have a big enough market for IP to address. And that’s where you go in and do the extreme customization.”

Chiplets
Some have questioned if the emerging chiplet industry will reverse this trend. “We will continue to see systems composed of many hardware accelerator blocks, and advanced silicon integration technologies (i.e., 3D stacking and chiplets) will make that even easier,” says Mythic’s Fick. “There are many companies working on open standards for chiplets, enabling communication bandwidth and energy efficiency that is an order of magnitude greater than what can be built on a PCB. Perhaps soon, the advanced system-in-package will overtake the PCB as the way systems are designed.”

Chiplets are not likely to be highly configurable. “Configuration in the chiplet world might become just a function of switching off things you don’t need,” says Schirrmeister. “Configuration really means that you do not use certain things. You don’t get your money back for those items. It’s all basically applying math and predicting what your volumes are going to be. If it’s an incremental cost that has one more block on it to support another interface, or making the block the Ethernet block with time triggered stuff in it for automotive, that gives you an incremental effort of X. Now, you have to basically estimate whether it also gives you a multiple of that incremental effort as incremental profit. It works out this way because chips just become very configurable. Chiplets are just going in the direction or finding the balance of more generic usage so that you can apply them in more chiplet designs.”

The chiplet market is far from certain today. “The promise of chiplets is that you use only the function that you want from the supplier that you want, in the right node, at the right location,” says Expedera’s Karazuba. “The idea of specialization and chiplets are at arm’s length. They’re actually together, but chiplets have a long way to go. There’s still not that universal agreement of the different things around a chiplet that have to be in order to make the product truly mass market.”

While chiplets have been proven to work, nearly all of the chiplets in use today are proprietary. “To build a viable [commercial] chiplet company, you have to be going after a broad enough market, large enough from a dollar perspective, then you can make all the investment, have success and get everything back accordingly,” says Blue Cheetah’s Alon. “There’s a similar tension where people would like to build a general-purpose chiplet that can be used anywhere, by anyone. That is the plug-and-play discussion, but you could finish up with something that becomes so general-purpose, with so much overhead, that it’s just not attractive in any particular market. In the chiplet case, for technical reasons, it might not actually really work that way at all. You might try to build it for general purpose, and it turns out later that it doesn’t plug into particular sockets that are of interest.”

The economics of chiplet viability have not yet been defined. “The thing about chiplets is they can be small,” says Klein. “Being small means that we don’t need as big a market for them as we would for a very large chip. We can also build them on different technologies. We can have some that are on older technologies, where transistors are cheaper, and we can combine those with other chiplets that might be leading-edge nodes where we could have general-purpose CPUs or NPU accelerators. There’s a mix-and-match, and we can do chiplets smaller than we can general-purpose chips. We can do smaller runs of them. We can take that IP and customize it for a particular market vertical and create some chiplets for that, change the configuration a bit, and do another run for something else. There’s a level of customization that can be deployed and supported by the market that’s a little bit more than we’ve seen in full-size chips, where the entire thing has to be built into one package.

Conclusion
What it means for a design to be general-purpose or custom is changing. All designs will contain some of each. Some companies will develop novel architectures using general-purpose processors, and these will be better than a fully general-purpose solution. Others will create highly customized hardware for some functions that are known to be stable, and general purpose for things that are likely to change. One thing has never changed, however. A company is not likely to add more customization than necessary to satisfy the needs of the market they are targeting.

Further Reading
Challenges With Chiplets And Power Delivery
Benefits and challenges in heterogeneous integration.
Chiplets: 2023 (EBook)
What chiplets are, what they are being used for today, and what they will be used for in the future.

The post Will Domain-Specific ICs Become Ubiquitous? appeared first on Semiconductor Engineering.

  • ✇Semiconductor Engineering
  • Commercial Chiplet Ecosystem May Be A Decade AwayAnn Mutschler
    Experts at the Table: Semiconductor Engineering sat down to talk about the challenges of establishing a commercial chiplet ecosystem with Frank Schirrmeister, vice president solutions and business development at Arteris; Mayank Bhatnagar, product marketing director in the Silicon Solutions Group at Cadence; Paul Karazuba, vice president of marketing at Expedera; Stephen Slater, EDA product management/integrating manager at Keysight; Kevin Rinebold, account technology manager for advanced packagi
     

Commercial Chiplet Ecosystem May Be A Decade Away

29. Únor 2024 v 09:08

Experts at the Table: Semiconductor Engineering sat down to talk about the challenges of establishing a commercial chiplet ecosystem with Frank Schirrmeister, vice president solutions and business development at Arteris; Mayank Bhatnagar, product marketing director in the Silicon Solutions Group at Cadence; Paul Karazuba, vice president of marketing at Expedera; Stephen Slater, EDA product management/integrating manager at Keysight; Kevin Rinebold, account technology manager for advanced packaging solutions at Siemens EDA; and Mick Posner, vice president of product management for high-performance computing IP solutions at Synopsys. What follows are excerpts of that discussion.

Experts at the Table: Semiconductor Engineering sat down to talk about the challenges of establishing a commercial chiplet ecosystem with Frank Schirrmeister, vice president solutions and business development at Arteris; Mayank Bhatnagar, product marketing director in the Silicon Solutions Group at Cadence; Paul Karazuba, vice president of marketing at Expedera; Stephen Slater, EDA product management/integrating manager at Keysight; Kevin Rinebold, account technology manager for advanced packaging solutions at Siemens EDA; and Mick Posner, vice president of product management for high-performance computing IP solutions at Synopsys. What follows are excerpts of that discussion.

L-R: Arteris’ Schirrmeister, Cadence’s Bhatnagar, Expedera’s Karazuba, Keysight’s Slater, Siemens EDA’s Rinebold, and Synopsys’ Posner.

SE: There’s a lot of buzz and activity around every aspect of chiplets today. What is your impression of where the commercial chiplet ecosystem stands today?

Schirrmeister: There’s a lot of interest today in an open chiplet ecosystem, but we are probably still quite a bit away from true openness. The proprietary versions of chiplets are alive and kicking out there. We see them in designs. We vendors are all supporting those to make it reality, like the UCIe proponents, but it will take some time to get to a fully open ecosystem. It’s probably at least three to five years before we get to a PCI Express type exchange environment.

Bhatnagar: The commercial chiplet ecosystem is at a very early stage. Many companies are providing chiplets, are designing them, and they’re shipping products — but they’re still single-vendor products, where the same company is designing all the pieces. I hope that with the advancements the UCIe standard is making, and with more standardization, we eventually can get to a marketplace-like environment for chiplets. We are not there.

Karazuba: The commercialization of homogeneous chiplets is pretty well understood by groups like AMD. But for the commercialization of heterogeneous chiplets, which is chiplets from multiple suppliers, there are still a lot of questions out there about that.

Slater: We participate in a lot of the board discussions, and attend industry events like TSMC’s OIP, and there’s a lot of excitement out there at the moment. I see a lot of even midsize and small customers starting to think about their development plans for what chiplet should be. I do think those that are going to be successful first will be those that are within a singular foundry ecosystem like TSMC’s. Today if you’re selecting your IP, you’ve got a variety of ways to be able to pick and choose which IP, see what’s been taped out before, how successful it’s been so you have a way to manage your risk and your costs as you’re putting things together. What we’ll see in the future will be that now you have a choice. Are you purchasing IP, or are you purchasing chiplets? Crucially, it’s all coming from the same foundry and put together in the same manner. The technical considerations of things like UCIe standard packaging versus advanced packaging, and the analysis tool sets for high-speed simulation, as well as for things like thermal, are going to just become that much more important.

Rinebold: I’ve been doing this about 30 years, so I can date back to some of the very earliest days of multi-chip modules and such. When we talk about the ecosystem, there are plenty of examples out there today where we see HBM and logic getting combined at the interposer level. This works if you believe HBM is a chiplet, and that’s a whole other argument. Some would argue that HBM falls into that category. The idea of a true LEGO, snap-together mix and match of chiplets continues to be aspirational for the mainstream market, but there are some business impediments that need to get addressed. Again, there are exceptions in some of the single-vendor solutions, where it’s more or less homogeneous integration, or an entirely vertically integrated type of environment where single vendors are integrating their own chiplets into some pretty impressive packages.

Posner: Aspirational is the word we use for an open ecosystem. I’m going to be a little bit more of a downer by saying I believe it’s 5 to 10 years out. Is it possible? Absolutely. But the biggest issue we see at the moment is a huge knowledge gap in what that really means. And as technology companies become more educated on really what that means, we’ll find that there will be some acceleration in adoption. But within what we call ‘captive’ — within a single company or a micro-ecosystem — we’re seeing multi-die systems pick up.

SE: Is it possible to define the pieces we have today from a technology point of view, to make a commercial chiplet ecosystem a reality?

Rinebold: What’s encouraging is the development of standards. There’s some adoption. We’ve already mentioned UCIe for some of the die-to-die protocols. Organizations like JEDEC announced the extension of their JEP30 PartModel format into the chiplet ecosystem to incorporate chiplet-style data. Think about this as an electronic data sheet. A lot of this work has been incorporated into the CDX working group under Open Compute. That’s encouraging. There were some comments a little bit earlier about having an open marketplace. I would agree we’re probably 3 to 10 years away from that coming to fruition. The underlying framework and infrastructure is there, but a lot of the licensing and distribution issues have to get resolved before you see any type of broad adoption.

Posner: The infrastructure is available. The EDA tools to create, to package, to analyze, to simulate, to manufacture — those tools are all there. The intellectual property that sits around it, either UCIe or some of the more traditional die-to-die interfaces, all of that’s there. What’s not established are full methodology and flows that lead to interoperability. Everything within captive is possible, but a broader ecosystem, a marketplace, is going to require silicon interoperability, simulation, packaging, all of that. That’s the area that we believe is missing — and still building.

Schirrmeister: Do we know what’s required? We probably can define that reasonably well. If the vision is an open ecosystem with IP on chiplets that you can just plug together like LEGO blocks, then the IP industry informs us of what’s required, and then there are some gaps on top of them. I hear people from the hard-coded IP world talking about the equivalent of PDKs for chiplets, but today’s IP ecosystem and the IP deliverables are informing us it doesn’t work like LEGO blocks yet. We are improving every year. But this whole, ‘I take my whiteboard and then everything just magically functions together’ is not what we have today. We need to think really hard about what the additional challenges are when you disaggregate that into chiplets and protocols. Then you get big systemic issues to deal with, like how do you deal with coherency across chiplets? It was challenging enough to get it done on a chip. Now you potentially have to deal with other partnerships you don’t even own. This is not a captive environment in an open ecosystem. That makes it very challenging, and it creates job security for at least 5 to 10 years.

Bhatnagar: On the technical side, what’s going well is adoption. We can see big companies like Intel, and then of course, IP providers like us and Synopsys. Everybody’s working toward standardizing chiplet integration, and that is working very well. EDA tools are also coming up to support that. But we are still very far from a marketplace because there are many issues that are not sorted out, like licensing and a few other things that need a bit more time.

Slater: The standards bodies and networking groups have excited a lot of people, and we’re getting a broad set of customers that are coming along. And one point I was thinking, is this only for very high-end compute? From the companies that I see presenting in those types of forums, it’s even companies working in automotive or aerospace/defense, planning out their future for the next 10 years or more. In the automotive case, it was a company that was thinking about creating chiplets for internal consumption — so maybe reorganizing how they look at creating many different variations or evolutions of their products, trying to do it as more modular chiplet types of blocks. ‘If we take the microprocessor part of it, would we sell that as a chiplet externally for other customers to integrate together into a bigger design?’ For me, the aha moment was seeing how broad the application would be. I do think that the standards work has been moving very fast, and that’s worked really well. For instance, at Keysight EDA, we just released a chiplet PHY designer. It’s a simulation for the high-speed digital link for UCIe, and that only comes about by having a standard that’s published, so an EDA company can take a look at it and realize what they need to do with it. The EDA tools are ready to handle these kinds of things. And maybe then, on to the last point is, in order to share the IP, in order to ensure that it’s available, database and process management is going to become all the more important. You need to keep track of which chip is made on which process, and be able to make it available inside the company to other potential users of that.

SE: What’s in place today from a business perspective, and what still needs to be worked out?

Karazuba: From a business perspective, speaking strictly of heterogeneous chiplets, I don’t think there’s anything really in place. Let me qualify that by asking, ‘Who is responsible for warranty? Who is responsible for testing? Who is responsible for faults? Who is responsible for supply chain?’ With homogeneous chiplets or monolithic silicon, that’s understood because that’s the way that this industry has been doing business since its inception. But when you talk about chiplets that are coming from multiple suppliers, with multiple IPs — and perhaps different interfaces, made in multiple fabs, then constructed by a third party, put together by a third party, tested by a fourth party, and then shipped — what happens when something goes wrong? Who do you point the finger at? Who do you go to and talk to? If a particular chiplet isn’t functioning as intended, it’s not necessarily that chiplet that’s bad. It may be the interface on another chiplet, or on a hub, whatever it might be. We’re going to get there, but right now that’s not understood. It’s not understood who is going to be responsible for things such as that. Is it the multi-chip module manufacturer, or is it the person buying it? I fear a return to the Wintel issue, where the chipmaker points to the OS maker, which points at the hardware maker, which points at the chipmaker. Understanding of the commercial side is is a real barrier to chiplets being adopted. Granted, the technical is much more difficult than the commercial, but I have no doubt the engineers will get there quicker than the business people.

Rinebold: I completely agree. What are the repercussions, warranty-related issues, things like that? I’d also go one step further. If you look at some of the larger silicon foundries right now, there is some concern about taking third-party wafers into their facilities to integrate in some type of heterogeneous, chiplet-type package. There are a lot of business and logistical issues that have to get addressed first. The technical stuff will happen quickly. It’s just a lot of these licensing- and distribution-type issues that need to get resolved. The other thing I want to back up to involves customers in the defense/industrial space. The trust and traceability and the province tracking of IP is going to be key for them, because they have so much expectation of multi-die or chiplet-type packaging as an alternative to monolithic scaling. Just look at all the government programs out there right now, with RESHAPE [Reshore Ecosystem for Secure Heterogeneous Advanced Packaging Electronics] and NGMM [Next-Generation Microelectronics Manufacturing] and such. They’re all in on this chiplet perspective, but they’re going to require a lot of security measures to understand who has touched the IP, where it comes from, how to you verify that.

Posner: Micro-ecosystems are forming because of all these challenges. If you naively think you can just go pick a die off the shelf and put it into your device, how do you warranty that? Who owns it? These micro-ecosystems are building up to fundamentally sort that out. So within a couple of different companies, be it automotive or high-performance compute, they’ll come to terms that are acceptable across all of them. And it’s these micro-ecosystems that are really going to end up driving open chiplets, and I think it’s going to be an organic type of growth. Chiplets are available for a specific application today, but we have this vision that someone else could use it, and we see that with the multiple modes being built into the dies. One mode is, ‘I’m connecting to myself. It’s a very tight, low-latency link.’ But I have this vision in the future that I’m going to need to have an interface or protocol that is more open and uses standard available stacks, and which can be bought off the shelf and integrated. That’s one side of the logistics. I want to mention two more things. It is possible to do interoperability across nodes. We demonstrated our TSMC N3 UCIe with Intel’s in-house UCIe, all put together on an Intel process. This was two separate companies working together, showing the first physical interoperability, so it’s possible. But going forward that’s still just a small part of the overall effort. In the IP space we’ve lived with an IP model of, ‘Build once, sell many.’ With the chiplet marketplace, unless there is a revenue stream from that chiplet, it will break that model. Companies think, ‘I only have to buy the IP once, and then I’m selling my silicon.’ But the infrastructure, the resources that are required to build all of this does not go away. There has to be money at the end of that tunnel for all of these different companies to be investing.

Schirrmeister: Mick is 100% right, but we may have a definition issue here with what we really mean by an ‘open’ chiplet ecosystem. I have two distinct conversations when I talk to partners and customers. On the one hand, you have board designers who are doing more and more integration, and they look at you with a wrinkled forehead and say, ‘We’ve been doing this for years. What are you talking about?’ It may not have been 3D-IC in the classic sense of all items, but they say, ‘Yeah, there are issues with warranties, and the user figures it out.’ The board people arrive from one side of the equation at chiplets because that’s the next evolution of integration. You need to be very efficient. That’s not what we call an open ecosystem of chiplets here. The idea is that you have this marketplace to mix things up, and you have the economies of scale by selling the same chiplet to multiple people. That’s really what the chip designers are thinking about, and some of them think even further because if you do it all in true 3D-IC fashion, then you actually have to co-design those chiplets in a way, and that’s a whole other dimension that needs to be sorted out. To pick a little bit on the big companies that have board and chip design groups in house, you see this even within the messaging of these companies. You have people who come from the board side, and for them it’s not a solved problem. It always has been challenging, but they’re going to take it to the next level. The chip guys are looking at this from a perspective of one interface, like PCI Express, now being UCIe. And then I think about this because the networks on chip need to become super NoCs across chiplets, which poses its own challenges. And that all needs to work together. But those are really chiplets designed for the purpose of being in a chiplet ecosystem. And to that end, Mick’s estimation of longer than five years is probably correct because those purpose-built chiplets, for the purpose of being in an open ecosystem, have all these challenges the board guys have already been dealing with for quite some time. They’re now ‘just getting smaller’ in the amount of integration they do.

Slater: When you put all these chiplets together and start to do that integration, in what order do you start placing the components down? You don’t want to throw away one very expensive chiplet because there was an issue with one of the smaller cheaper ones. So, there are now a lot of thoughts about how to go about doing almost like unit tests on individual chiplets first, but then you want to do some form of system test as you go along. That’s definitely something we need to think about. On the business front,  who is going to be most interested in purchasing a chiplet-style solution. It comes down to whether you have a yield problem. If your chips are getting to the size where you have yield concerns, then definitely it makes sense to think about using chiplets and breaking it up into smaller pieces. Not everything scales, so why move to the lowest process node when you could purchase something at a different process node that has less risk and costs less to manufacture, and then put it all together. The ones that have been successful so far — the big companies like Intel, AMD — were already driven to that edge. The chips got to a size that couldn’t fit on the reticle. We think about how many companies fit into that category, and that will factor into whether or not the cost and risk is worth it for them.

Bhatnagar: From a business perspective, what is really important is the standardization. Inside of the chiplets is fine, but how it impacts other chiplets around it is important. We would like to be able to make something and sell many copies of it. But if there is no standardization, then either we are taking a gamble by going for one thing and assuming everybody moves to it, or we make multiple versions of the same thing and that adds extra costs. To really justify a business case for any chiplet or, or any sort of IP with the chiplet, the standardization is key for the electrical interconnect, packaging, and all other aspects of a system.

Fig. 1:  A chiplet design. Source: Cadence. 

Related Reading
Chiplets: 2023 (EBook)
What chiplets are, what they are being used for today, and what they will be used for in the future.
Proprietary Vs. Commercial Chiplets
Who wins, who loses, and where are the big challenges for multi-vendor heterogeneous integration.

The post Commercial Chiplet Ecosystem May Be A Decade Away appeared first on Semiconductor Engineering.

  • ✇Semiconductor Engineering
  • Broad Impact From Accelerating Tech CyclesEd Sperling
    Experts at the Table: Semiconductor Engineering sat down to discuss the impact of leading edge technologies such as generative AI in data centers, AR/VR, and security architectures for connected devices, with Michael Kurniawan, business strategy manager at Accenture; Kaushal Vora, senior director and head of business acceleration and ecosystem at Renesas Electronics; Paul Karazuba, vice president of marketing at Expedera; and Chowdary Yanamadala, technology strategist at Arm. What follows are ex
     

Broad Impact From Accelerating Tech Cycles

21. Únor 2024 v 09:01

Experts at the Table: Semiconductor Engineering sat down to discuss the impact of leading edge technologies such as generative AI in data centers, AR/VR, and security architectures for connected devices, with Michael Kurniawan, business strategy manager at Accenture; Kaushal Vora, senior director and head of business acceleration and ecosystem at Renesas Electronics; Paul Karazuba, vice president of marketing at Expedera; and Chowdary Yanamadala, technology strategist at Arm. What follows are excerpts of that conversation. Panelists were chosen by GSA’s EMTECH Interest Group. To view part one of this discussion, click here.


L-R: Accenture’s Kurniawan; Renesas’ Vora; Expedera’s Karazuba; Arm’s Yanamadala.

SE: In the past, a lot of data center applications were for things like enterprise resource planning (ERP), and those were 10- or 15-year cycles. Cycles now are 1 or 2 years at most. With ChatGPT, that’s about six months. How do companies plan for this today?

Kurniawan: In the past, businesses were very focused on just the technology. But technology is everywhere today. ERP is there to support the business initiatives, and there is a very intimate relationship between technology and business at this point. So virtually all businesses are technology businesses. We advise clients before implementing their technologies to think first about, ‘What are your business initiatives? What’s the business strategy? What’s the business imperative for where you want to go? What’s your vision?’ And then, once you understand that and get alignment from the leaders, you can think about the technology. You kind of jump back and forth, because those are really two sides of the same coin. You cannot separate them anymore. And your vision encompasses everything you want to achieve in the future while providing room for flexibility and testing out the technology plan you want to put in place to see how that supports your business vision. With every challenge comes opportunity. Our job as a consultant is really to be able to see what’s happening out there, continuously scanning the market, and trying to get ahead of the curve to advise clients.

Yanamadala: The rapid evolution of advanced technologies like generative AI can present challenges to data centers due to the short technology cycles and demanding workloads. Some of the key challenges with advanced workloads include fluctuating resource needs, because they can demand bursts of high compute. That means static resource allocation will be inefficient in handling these demands. Additionally, the growing demand for heterogenous computing can also present additional challenges in deploying a flexible compute infrastructure. Data centers are adding flexibility through adoption of containerization and virtualization. Adopting hardware-agnostic software frameworks like TensorFlow and PyTorch also can help to facilitate switching between different computing architectures. So can the development of efficient hardware and specialized AI accelerators.

SE: A lot of technology advancements are incremental, but if you get enough of these incremental improvements they can be combined in ways most people never imagined. We’ve seen systems shrink from mainframes to PCs to smart phones, and now computing is happening just about everywhere. Are we at the on the cusp of moving beyond a box, which we’ve been tethered to since the start of computing, and particularly with AR/VR.

Vora: I find it fascinating that somebody could wear a pair of glasses, get immersed in that world, and get used to it. From a user experience perspective, it seems like an extreme shift. Although I do see some play in certain verticals, it’s not clear there will be mass consumerization or adoption of this technology.

Kurniawan: Right now, generative AI is getting a lot of attention. ChatGPT captured the attention of hundreds of millions of people in 60 days. That says something. You input a prompt and you get a response back. ChatGPT is super-intuitive. It’s a technology with potential for many killer use cases. AR/VR is promising technology with upside potential, but there’s still work that needs to be done to tie that technology to the use case. Virtual reality gaming is number one, for sure. But the path to leveraging that technology to enhance how we operate other stuff still needs more clarity. That said, we recently published a white paper talking about the build-outs around the globe, driven by the combination of public incentivies and private investments. Everywhere around the world, everybody wants to build up their manufacturing facilities. We conducted interviews with semiconductor experts, and touched on AR/VR when we asked what they did during COVID when the whole world shut down. Is AR/VR like a hammer looking for nails? The overall response we got was pretty positive. They said that AR/VR probably will be tremendously useful at some future date. But they like where the technologies are going. For example, there are constraints like heat dissipation and the size of the headset, but the belief is the technology will evolve. As it matures to become more user-centric, you might think about using an AR/VR device to control the operations of the equipment in a fab. But there is work needed from a value perspective — connectivity and processing, for example.

Karazuba: AR/VR in the past has largely been a victim of its own hype cycle. There’s a lot of promises people have made. We’ve spent a little bit of time with AR/VR folks. There’s certainly an acknowledgement that whatever success the Apple AR/VR headset has will largely set the tone for the next half decade for what the AR/VR market is. These folks are not undeterred by that. Are we at a point today where you can walk around all day with mixed reality? No. With a home gaming system, being tied to the wall is probably a small price to pay for the constant AC power and the performance advantages that will provide. This is going to take some time. The value proposition is there, but the timing may not be right today. We saw this with the watch and wearables. Now, everybody has one of these. But it took five to seven years before it really took off.

Vora: We’ve worn watches for decades, so it’s not something new. It’s just that what we wear now is different. But with AR/VR, we’ve never done that before. How do you suddenly expect massive change like that?

Karazuba: But most of us are wearing eyeglasses. If you have a form factor that is a version of what we have now, where information is just simply overlaid on what we’re seeing, it’s not that far of a jump for mixed reality or augmented reality. However, with virtual reality, I find it hard to believe that people are going to walk into a conference room with a bunch of other people and put a headset on.

Yanamadala: We’ve seen devices and sensors deployed practically everywhere. Platforms that offer high-performance computing, along with secure, power-efficient hardware and connectivity are available today, and they will make this trend possible. But untethered or ambient consumer experiences in the mass market will have their challenges. We will need to invest in substantial infrastructure to enable technology to operate invisibly in the background. So while consumer-facing technology deployments increasingly become untethered, the compute and connectivity infrastructure will still require connections for power and bandwidth.

SE: People have been sounding the alarm for hardware security for years, but with limited success. What’s changed today is that we have many more connected devices and more valuable data. Is the chip industry starting to take this seriously? Or is the problem now so immense and pervasive that anything we do is just going to be a drop in the bucket?

Yanamada: Security is fundamental from the chip level, and five years ago we saw an opportunity to proactively improve the quality of chip security. IoT was in its early stages, and each chip vendor had varied and fragmented approaches to security. They also rarely approached an independent evaluation lab to check the robustness of their security implementation. But with increasing connectivity and data becoming more valuable, hackers were paying close attention, and governments were considering what action to take to protect consumers. That’s why in 2019, we launched PSA Certified – to rally the ecosystem to be proactive with security best practices. It’s critically important that chip vendors, software platforms, OEMs, and CSPs can deploy and access standardized Root of Trust services. Security is complicated. You need the whole value chain to work together.

Vora: Security architectures, at least on the hardware side, have come a long way. We pretty much now have a semiconductor TPM-like [Trusted Platform Module] capability, with security capabilities built into even small microcontrollers. They have cryptographic engines, randomizers, and all sorts of security elements built in. The fundamental challenge with security is that just putting some security features on a chip and providing all the technology pieces won’t solve the security challenge. Security is more of a system challenge and a policy challenge. In many cases, people have to think about it within the context of the entire network. And then, it’s only as strong as the weakest link in the network. That piece of security is going to grow in complexity as we start seeing more complex use cases with AI coming into play with IoT. On the other side, though, as data handling of AI moves closer to the edge, we will start seeing more local inferencing and local data being worked on without the need to mindlessly transport data across layers of networks and across the cloud. We’re going to see some lower risk and improvements from a data-in-flight perspective, because of a lot of more localization of intelligence and compute happening at different layers of the edge. As we start moving more to the edge, AI starts getting more of a hold there. But as a whole, security will remain a challenge. The fundamental challenges with security have not changed. It’s just the context and the systems in which we will have to apply them are different.

Karazuba: The semiconductor industry is finally starting to understand the true nature of what security breaches could mean with the type of data we’re handling. Security is a day zero responsibility of anyone building a product, whether that product is a chip or a device, and security responsibilities proliferate across the entire lifecycle of the of any device, from the person who is architecting the chip, to the person designing the smartphone, to the carrier. I would argue that carrier responsibilities for security go as far as the stopping those robo calls that we all get, and the spam calls and phishing calls. The internet service providers have a responsibility to stop the phishing e-mails. That’s all part of security. Obviously, with banks and financial institutions, their security is generally pretty good. But it stretches the entire way, and in the security world, the weakest link is always the security profile of your device. We’re getting better. We always could be better. But I am more encouraged now than I’ve been at any point since I really started looking at security of devices. I’m more encouraged by the way chips are being designed, deployed, manufactured, and delivered to customers.

Kurniawan: There’s some certification for IoT devices before those are sent into the market to make sure there is some security standard they adhere to. But two key words I mentioned before, collaboration and flexibility, are applicable to security, as well. Collaboration involves where you see the rest of the system, including other components in the technology set, going to evolve in the future. And flexibility is required, because security is a moving target. It needs to evolve because as you upgrade your system, your software, a vulnerability will move, as well. You need flexibility and security-minded thinking infused into your chip design.

Related Reading
Preparing For An AI-Driven Future In Chips (part 1 of above roundtable)
Designs need to be flexible enough to handle an onslaught of continuous and rapid changes, but secure enough to protect data.

The post Broad Impact From Accelerating Tech Cycles appeared first on Semiconductor Engineering.

  • ✇Semiconductor Engineering
  • Broad Impact For Accelerating Tech CyclesEd Sperling
    Experts at the Table: Semiconductor Engineering sat down to discuss the impact of leading edge technologies such as generative AI in data centers, AR/VR, and security architectures for connected devices, with Michael Kurniawan, business strategy manager at Accenture; Kaushal Vora, senior director and head of business acceleration and ecosystem at Renesas Electronics; Paul Karazuba, vice president of marketing at Expedera; and Chowdary Yanamadala, technology strategist at Arm. What follows are ex
     

Broad Impact For Accelerating Tech Cycles

21. Únor 2024 v 09:01

Experts at the Table: Semiconductor Engineering sat down to discuss the impact of leading edge technologies such as generative AI in data centers, AR/VR, and security architectures for connected devices, with Michael Kurniawan, business strategy manager at Accenture; Kaushal Vora, senior director and head of business acceleration and ecosystem at Renesas Electronics; Paul Karazuba, vice president of marketing at Expedera; and Chowdary Yanamadala, technology strategist at Arm. What follows are excerpts of that conversation. Panelists were chosen by GSA’s EMTECH Interest Group. To view part one of this discussion, click here.


L-R: Accenture’s Kurniawan; Renesas’ Vora; Expedera’s Karazuba; Arm’s Yanamadala.

SE: In the past, a lot of data center applications were for things like enterprise resource planning (ERP), and those were 10- or 15-year cycles. Cycles now are 1 or 2 years at most. With ChatGPT, that’s about six months. How do companies plan for this today?

Kurniawan: In the past, businesses were very focused on just the technology. But technology is everywhere today. ERP is there to support the business initiatives, and there is a very intimate relationship between technology and business at this point. So virtually all businesses are technology businesses. We advise clients before implementing their technologies to think first about, ‘What are your business initiatives? What’s the business strategy? What’s the business imperative for where you want to go? What’s your vision?’ And then, once you understand that and get alignment from the leaders, you can think about the technology. You kind of jump back and forth, because those are really two sides of the same coin. You cannot separate them anymore. And your vision encompasses everything you want to achieve in the future while providing room for flexibility and testing out the technology plan you want to put in place to see how that supports your business vision. With every challenge comes opportunity. Our job as a consultant is really to be able to see what’s happening out there, continuously scanning the market, and trying to get ahead of the curve to advise clients.

Yanamadala: The rapid evolution of advanced technologies like generative AI can present challenges to data centers due to the short technology cycles and demanding workloads. Some of the key challenges with advanced workloads include fluctuating resource needs, because they can demand bursts of high compute. That means static resource allocation will be inefficient in handling these demands. Additionally, the growing demand for heterogenous computing can also present additional challenges in deploying a flexible compute infrastructure. Data centers are adding flexibility through adoption of containerization and virtualization. Adopting hardware-agnostic software frameworks like TensorFlow and PyTorch also can help to facilitate switching between different computing architectures. So can the development of efficient hardware and specialized AI accelerators.

SE: A lot of technology advancements are incremental, but if you get enough of these incremental improvements they can be combined in ways most people never imagined. We’ve seen systems shrink from mainframes to PCs to smart phones, and now computing is happening just about everywhere. Are we at the on the cusp of moving beyond a box, which we’ve been tethered to since the start of computing, and particularly with AR/VR.

Vora: I find it fascinating that somebody could wear a pair of glasses, get immersed in that world, and get used to it. From a user experience perspective, it seems like an extreme shift. Although I do see some play in certain verticals, it’s not clear there will be mass consumerization or adoption of this technology.

Kurniawan: Right now, generative AI is getting a lot of attention. ChatGPT captured the attention of hundreds of millions of people in 60 days. That says something. You input a prompt and you get a response back. ChatGPT is super-intuitive. It’s a technology with potential for many killer use cases. AR/VR is promising technology with upside potential, but there’s still work that needs to be done to tie that technology to the use case. Virtual reality gaming is number one, for sure. But the path to leveraging that technology to enhance how we operate other stuff still needs more clarity. That said, we recently published a white paper talking about the build-outs around the globe, driven by the combination of public incentivies and private investments. Everywhere around the world, everybody wants to build up their manufacturing facilities. We conducted interviews with semiconductor experts, and touched on AR/VR when we asked what they did during COVID when the whole world shut down. Is AR/VR like a hammer looking for nails? The overall response we got was pretty positive. They said that AR/VR probably will be tremendously useful at some future date. But they like where the technologies are going. For example, there are constraints like heat dissipation and the size of the headset, but the belief is the technology will evolve. As it matures to become more user-centric, you might think about using an AR/VR device to control the operations of the equipment in a fab. But there is work needed from a value perspective — connectivity and processing, for example.

Karazuba: AR/VR in the past has largely been a victim of its own hype cycle. There’s a lot of promises people have made. We’ve spent a little bit of time with AR/VR folks. There’s certainly an acknowledgement that whatever success the Apple AR/VR headset has will largely set the tone for the next half decade for what the AR/VR market is. These folks are not undeterred by that. Are we at a point today where you can walk around all day with mixed reality? No. With a home gaming system, being tied to the wall is probably a small price to pay for the constant AC power and the performance advantages that will provide. This is going to take some time. The value proposition is there, but the timing may not be right today. We saw this with the watch and wearables. Now, everybody has one of these. But it took five to seven years before it really took off.

Vora: We’ve worn watches for decades, so it’s not something new. It’s just that what we wear now is different. But with AR/VR, we’ve never done that before. How do you suddenly expect massive change like that?

Karazuba: But most of us are wearing eyeglasses. If you have a form factor that is a version of what we have now, where information is just simply overlaid on what we’re seeing, it’s not that far of a jump for mixed reality or augmented reality. However, with virtual reality, I find it hard to believe that people are going to walk into a conference room with a bunch of other people and put a headset on.

Yanamadala: We’ve seen devices and sensors deployed practically everywhere. Platforms that offer high-performance computing, along with secure, power-efficient hardware and connectivity are available today, and they will make this trend possible. But untethered or ambient consumer experiences in the mass market will have their challenges. We will need to invest in substantial infrastructure to enable technology to operate invisibly in the background. So while consumer-facing technology deployments increasingly become untethered, the compute and connectivity infrastructure will still require connections for power and bandwidth.

SE: People have been sounding the alarm for hardware security for years, but with limited success. What’s changed today is that we have many more connected devices and more valuable data. Is the chip industry starting to take this seriously? Or is the problem now so immense and pervasive that anything we do is just going to be a drop in the bucket?

Yanamada: Security is fundamental from the chip level, and five years ago we saw an opportunity to proactively improve the quality of chip security. IoT was in its early stages, and each chip vendor had varied and fragmented approaches to security. They also rarely approached an independent evaluation lab to check the robustness of their security implementation. But with increasing connectivity and data becoming more valuable, hackers were paying close attention, and governments were considering what action to take to protect consumers. That’s why in 2019, we launched PSA Certified – to rally the ecosystem to be proactive with security best practices. It’s critically important that chip vendors, software platforms, OEMs, and CSPs can deploy and access standardized Root of Trust services. Security is complicated. You need the whole value chain to work together.

Vora: Security architectures, at least on the hardware side, have come a long way. We pretty much now have a semiconductor TPM-like [Trusted Platform Module] capability, with security capabilities built into even small microcontrollers. They have cryptographic engines, randomizers, and all sorts of security elements built in. The fundamental challenge with security is that just putting some security features on a chip and providing all the technology pieces won’t solve the security challenge. Security is more of a system challenge and a policy challenge. In many cases, people have to think about it within the context of the entire network. And then, it’s only as strong as the weakest link in the network. That piece of security is going to grow in complexity as we start seeing more complex use cases with AI coming into play with IoT. On the other side, though, as data handling of AI moves closer to the edge, we will start seeing more local inferencing and local data being worked on without the need to mindlessly transport data across layers of networks and across the cloud. We’re going to see some lower risk and improvements from a data-in-flight perspective, because of a lot of more localization of intelligence and compute happening at different layers of the edge. As we start moving more to the edge, AI starts getting more of a hold there. But as a whole, security will remain a challenge. The fundamental challenges with security have not changed. It’s just the context and the systems in which we will have to apply them are different.

Karazuba: The semiconductor industry is finally starting to understand the true nature of what security breaches could mean with the type of data we’re handling. Security is a day zero responsibility of anyone building a product, whether that product is a chip or a device, and security responsibilities proliferate across the entire lifecycle of the of any device, from the person who is architecting the chip, to the person designing the smartphone, to the carrier. I would argue that carrier responsibilities for security go as far as the stopping those robo calls that we all get, and the spam calls and phishing calls. The internet service providers have a responsibility to stop the phishing e-mails. That’s all part of security. Obviously, with banks and financial institutions, their security is generally pretty good. But it stretches the entire way, and in the security world, the weakest link is always the security profile of your device. We’re getting better. We always could be better. But I am more encouraged now than I’ve been at any point since I really started looking at security of devices. I’m more encouraged by the way chips are being designed, deployed, manufactured, and delivered to customers.

Kurniawan: There’s some certification for IoT devices before those are sent into the market to make sure there is some security standard they adhere to. But two key words I mentioned before, collaboration and flexibility, are applicable to security, as well. Collaboration involves where you see the rest of the system, including other components in the technology set, going to evolve in the future. And flexibility is required, because security is a moving target. It needs to evolve because as you upgrade your system, your software, a vulnerability will move, as well. You need flexibility and security-minded thinking infused into your chip design.

Related Reading
Preparing For An AI-Driven Future In Chips (part 1 of above roundtable)
Designs need to be flexible enough to handle an onslaught of continuous and rapid changes, but secure enough to protect data.

The post Broad Impact For Accelerating Tech Cycles appeared first on Semiconductor Engineering.

❌
❌