FreshRSS

Normální zobrazení

Jsou dostupné nové články, klikněte pro obnovení stránky.
PředevčíremHlavní kanál

Uncovering A Significant Residual Attack Surface For Cross-Privilege Spectre-V2 Attacks

A technical paper titled “InSpectre Gadget: Inspecting the Residual Attack Surface of Cross-privilege Spectre v2” was presented at the August 2024 USENIX Security Symposium by researchers at Vrije Universiteit Amsterdam.

Abstract:

“Spectre v2 is one of the most severe transient execution vulnerabilities, as it allows an unprivileged attacker to lure a privileged (e.g., kernel) victim into speculatively jumping to a chosen gadget, which then leaks data back to the attacker. Spectre v2 is hard to eradicate. Even on last-generation Intel CPUs, security hinges on the unavailability of exploitable gadgets. Nonetheless, with (i) deployed mitigations—eIBRS, no-eBPF, (Fine)IBT—all aimed at hindering many usable gadgets, (ii) existing exploits relying on now-privileged features (eBPF), and (iii) recent Linux kernel gadget analysis studies reporting no exploitable gadgets, the common belief is that there is no residual attack surface of practical concern.

In this paper, we challenge this belief and uncover a significant residual attack surface for cross-privilege Spectre-v2 attacks. To this end, we present InSpectre Gadget, a new gadget analysis tool for in-depth inspection of Spectre gadgets. Unlike existing tools, ours performs generic constraint analysis and models knowledge of advanced exploitation techniques to accurately reason over gadget exploitability in an automated fashion. We show that our tool can not only uncover new (unconventionally) exploitable gadgets in the Linux kernel, but that those gadgets are sufficient to bypass all deployed Intel mitigations. As a demonstration, we present the first native Spectre-v2 exploit against the Linux kernel on last-generation Intel CPUs, based on the recent BHI variant and able to leak arbitrary kernel memory at 3.5 kB/sec. We also present a number of gadgets and exploitation techniques to bypass the recent FineIBT mitigation, along with a case study on a 13th Gen Intel CPU that can leak kernel memory at 18 bytes/sec.”

Find the technical paper here. Published August 2024. Distinguished Paper Award Winner.  Find additional information here on VU Amsterdam’s site.

Wiebing, Sander, Alvise de Faveri Tron, Herbert Bos, and Cristiano Giuffrida. “InSpectre Gadget: Inspecting the residual attack surface of cross-privilege Spectre v2.” In USENIX Security. 2024.

Further Reading
Defining Chip Threat Models To Identify Security Risks
Not every device has the same requirements, and even the best security needs to adapt.

The post Uncovering A Significant Residual Attack Surface For Cross-Privilege Spectre-V2 Attacks appeared first on Semiconductor Engineering.

Data Memory-Dependent Prefetchers Pose SW Security Threat By Breaking Cryptographic Implementations

A technical paper titled “GoFetch: Breaking Constant-Time Cryptographic Implementations Using Data Memory-Dependent Prefetchers” was presented at the August 2024 USENIX Security Symposium by researchers at University of Illinois Urbana-Champaign, University of Texas at Austin, Georgia Institute of Technology, University of California Berkeley, University of Washington, and Carnegie Mellon University.

Abstract:

“Microarchitectural side-channel attacks have shaken the foundations of modern processor design. The cornerstone defense against these attacks has been to ensure that security-critical programs do not use secret-dependent data as addresses. Put simply: do not pass secrets as addresses to, e.g., data memory instructions. Yet, the discovery of data memory-dependent prefetchers (DMPs)—which turn program data into addresses directly from within the memory system—calls into question whether this approach will continue to remain secure.

This paper shows that the security threat from DMPs is significantly worse than previously thought and demonstrates the first end-to-end attacks on security-critical software using the Apple m-series DMP. Undergirding our attacks is a new understanding of how DMPs behave which shows, among other things, that the Apple DMP will activate on behalf of any victim program and attempt to “leak” any cached data that resembles a pointer. From this understanding, we design a new type of chosen-input attack that uses the DMP to perform end-to-end key extraction on popular constant-time implementations of classical (OpenSSL Diffie-Hellman Key Exchange, Go RSA decryption) and post-quantum cryptography (CRYSTALS-Kyber and CRYSTALS-Dilithium).”

Find the technical paper here. Published August 2024.

Chen, Boru, Yingchen Wang, Pradyumna Shome, Christopher W. Fletcher, David Kohlbrenner, Riccardo Paccagnella, and Daniel Genkin. “GoFetch: Breaking constant-time cryptographic implementations using data memory-dependent prefetchers.” In Proc. USENIX Secur. Symp, pp. 1-21. 2024.

Further Reading
Chip Security Now Depends On Widening Supply Chain
How tighter HW-SW integration and increasing government involvement are changing the security landscape for chips and systems.

 

The post Data Memory-Dependent Prefetchers Pose SW Security Threat By Breaking Cryptographic Implementations appeared first on Semiconductor Engineering.

  • ✇Semiconductor Engineering
  • Heterogeneity Of 3DICs As A Security VulnerabilityTechnical Paper Link
    A new technical paper titled “Harnessing Heterogeneity for Targeted Attacks on 3-D ICs” was published by Drexel University. Abstract “As 3-D integrated circuits (ICs) increasingly pervade the microelectronics industry, the integration of heterogeneous components presents a unique challenge from a security perspective. To this end, an attack on a victim die of a multi-tiered heterogeneous 3-D IC is proposed and evaluated. By utilizing on-chip inductive circuits and transistors with low voltage th
     

Heterogeneity Of 3DICs As A Security Vulnerability

A new technical paper titled “Harnessing Heterogeneity for Targeted Attacks on 3-D ICs” was published by Drexel University.

Abstract
“As 3-D integrated circuits (ICs) increasingly pervade the microelectronics industry, the integration of heterogeneous components presents a unique challenge from a security perspective. To this end, an attack on a victim die of a multi-tiered heterogeneous 3-D IC is proposed and evaluated. By utilizing on-chip inductive circuits and transistors with low voltage threshold (LVT), a die based on CMOS technology is proposed that includes a sensor to monitor the electromagnetic (EM) emissions from the normal function of a victim die, without requiring physical probing. The adversarial circuit is self-powered through the use of thermocouples that supply the generated current to circuits that sense EM emissions. Therefore, the integration of disparate technologies in a single 3-D circuit allows for a stealthy, wireless, and non-invasive side-channel attack. A thin-film thermo-electric generator (TEG) is developed that produces a 115 mV voltage source, which is amplified 5 × through a voltage booster to provide power to the adversarial circuit. An on-chip inductor is also developed as a component of a sensing array, which detects changes to the magnetic field induced by the computational activity of the victim die. In addition, the challenges associated with detecting and mitigating such attacks are discussed, highlighting the limitations of existing security mechanisms in addressing the multifaceted nature of vulnerabilities due to the heterogeneity of 3-D ICs.”

Find the technical paper here. Published June 2024.

Alec Aversa and Ioannis Savidis. 2024. Harnessing Heterogeneity for Targeted Attacks on 3-D ICs. In Proceedings of the Great Lakes Symposium on VLSI 2024 (GLSVLSI ’24). Association for Computing Machinery, New York, NY, USA, 246–251. https://doi.org/10.1145/3649476.3660385.

The post Heterogeneity Of 3DICs As A Security Vulnerability appeared first on Semiconductor Engineering.

  • ✇Semiconductor Engineering
  • Heterogeneity Of 3DICs As A Security VulnerabilityTechnical Paper Link
    A new technical paper titled “Harnessing Heterogeneity for Targeted Attacks on 3-D ICs” was published by Drexel University. Abstract “As 3-D integrated circuits (ICs) increasingly pervade the microelectronics industry, the integration of heterogeneous components presents a unique challenge from a security perspective. To this end, an attack on a victim die of a multi-tiered heterogeneous 3-D IC is proposed and evaluated. By utilizing on-chip inductive circuits and transistors with low voltage th
     

Heterogeneity Of 3DICs As A Security Vulnerability

A new technical paper titled “Harnessing Heterogeneity for Targeted Attacks on 3-D ICs” was published by Drexel University.

Abstract
“As 3-D integrated circuits (ICs) increasingly pervade the microelectronics industry, the integration of heterogeneous components presents a unique challenge from a security perspective. To this end, an attack on a victim die of a multi-tiered heterogeneous 3-D IC is proposed and evaluated. By utilizing on-chip inductive circuits and transistors with low voltage threshold (LVT), a die based on CMOS technology is proposed that includes a sensor to monitor the electromagnetic (EM) emissions from the normal function of a victim die, without requiring physical probing. The adversarial circuit is self-powered through the use of thermocouples that supply the generated current to circuits that sense EM emissions. Therefore, the integration of disparate technologies in a single 3-D circuit allows for a stealthy, wireless, and non-invasive side-channel attack. A thin-film thermo-electric generator (TEG) is developed that produces a 115 mV voltage source, which is amplified 5 × through a voltage booster to provide power to the adversarial circuit. An on-chip inductor is also developed as a component of a sensing array, which detects changes to the magnetic field induced by the computational activity of the victim die. In addition, the challenges associated with detecting and mitigating such attacks are discussed, highlighting the limitations of existing security mechanisms in addressing the multifaceted nature of vulnerabilities due to the heterogeneity of 3-D ICs.”

Find the technical paper here. Published June 2024.

Alec Aversa and Ioannis Savidis. 2024. Harnessing Heterogeneity for Targeted Attacks on 3-D ICs. In Proceedings of the Great Lakes Symposium on VLSI 2024 (GLSVLSI ’24). Association for Computing Machinery, New York, NY, USA, 246–251. https://doi.org/10.1145/3649476.3660385.

The post Heterogeneity Of 3DICs As A Security Vulnerability appeared first on Semiconductor Engineering.

  • ✇Boing Boing
  • Yet another elk stomps on person in Estes Park — an "unprecedented" three attacks in 8 daysCarla Sinclair
    A third person was charged and stomped on by a cow elk in Estes Park, Colorado last week — an "unprecedented" third attack in eight days. And while the first two victims were both children — an 8-year-old riding her bike and a 4-year-old playing at a park (both which Boing Boing covered last week) — the third person was an adult who was walking her dog right in the middle of town on Friday. — Read the rest The post Yet another elk stomps on person in Estes Park — an "unprecedented" three attac
     

Yet another elk stomps on person in Estes Park — an "unprecedented" three attacks in 8 days

11. Červen 2024 v 00:52

A third person was charged and stomped on by a cow elk in Estes Park, Colorado last week — an "unprecedented" third attack in eight days.

And while the first two victims were both children — an 8-year-old riding her bike and a 4-year-old playing at a park (both which Boing Boing covered last week) — the third person was an adult who was walking her dog right in the middle of town on Friday. — Read the rest

The post Yet another elk stomps on person in Estes Park — an "unprecedented" three attacks in 8 days appeared first on Boing Boing.

Man who punched a woman in the face at New York event identified as millionaire banker (video)

10. Červen 2024 v 21:02

A man who has been identified as a wealthy investment banker allegedly slugged a woman in the face, causing her to fall to the ground, as shown in a video that circulated over the weekend. (See video below, posted by sami.) — Read the rest

The post Man who punched a woman in the face at New York event identified as millionaire banker (video) appeared first on Boing Boing.

  • ✇IEEE Spectrum
  • Default Passwords Jeopardize Water InfrastructureMargo Anderson
    Drinking-water systems pose increasingly attractive targets as malicious hacker activity is on the rise globally, according to new warnings from security agencies around the world. According to experts, basic countermeasures—including changing default passwords and using multifactor authentication—can still provide substantial defense. However, in the United States alone, more than 50,000 community water systems also represent a landscape of potential vulnerabilities that have provided a hacker’
     

Default Passwords Jeopardize Water Infrastructure

21. Květen 2024 v 18:08


Drinking-water systems pose increasingly attractive targets as malicious hacker activity is on the rise globally, according to new warnings from security agencies around the world. According to experts, basic countermeasures—including changing default passwords and using multifactor authentication—can still provide substantial defense. However, in the United States alone, more than 50,000 community water systems also represent a landscape of potential vulnerabilities that have provided a hacker’s playground in recent months.

Last November, for instance, hackers linked to Iran’s Islamic Revolutionary Guard broke into a water system in the western Pennsylvania town of Aliquippa. In January, infiltrators linked to a Russian hacktivist group penetrated the water system of a Texas town near the New Mexico border. In neither case did the attacks cause any substantial damage to the systems.

Yet the larger threat is still very real, according to officials. “When we think about cybersecurity and cyberthreats in the water sector, this is not a hypothetical,” a U.S. Environmental Protection Agency spokesperson said at a press briefing last year. “This is happening right now.” Then, to add to the mix, last month at a public forum in Nashville, FBI director Christopher Wray noted that China’s shadowy Volt Typhoon network (also known as “Vanguard Panda”) had broken into “critical telecommunications, energy, water, and other infrastructure sectors.”

“These attacks were not extremely sophisticated.” —Katherine DiEmidio Ledesma, Dragos

A 2021 review of cybervulnerabilities in water systems, published in the journal Water, highlights the converging factors of increasingly AI-enhanced and Internet-connected tools running more and bigger drinking-water and wastewater systems.

“These recent cyberattacks in Pennsylvania and Texas highlight the growing frequency of cyberthreats to water systems,” says study author Nilufer Tuptuk, a lecturer in security and crime science at University College London. “Over the years, this sense of urgency has increased, due to the introduction of new technologies such as IoT systems and expanded connectivity. These advancements bring their own set of vulnerabilities, and water systems are prime targets for skilled actors, including nation-states.”

According to Katherine DiEmidio Ledesma, head of public policy and government affairs at Washington, D.C.–based cybersecurity firm Dragos, both attacks bored into holes that should have been plugged in the first place. “I think the interesting point, and the first thing to consider here, is that these attacks were not extremely sophisticated,” she says. “They exploited things like default passwords and things like that to gain access.”

Low priority, low-hanging fruit

Peter Hazell is the cyberphysical security manager at Yorkshire Water in Bradford, England—and a coauthor of the Water 2021 cybervulnerability review in water systems. He says the United States’ power grid is relatively well-resourced and hardened against cyberattack, at least when compared to American water systems.

“The structure of the water industry in the United States differs significantly from that of Europe and the United Kingdom, and is often criticized for insufficient investment in basic maintenance, let alone cybersecurity,” Hazell says. “In contrast, the U.S. power sector, following some notable blackouts, has recognized its critical importance...and established [the North American Electric Reliability Corporation] in response. There is no equivalent initiative for safeguarding the water sector in the United States, mainly due to its fragmented nature—typically operated as multiple municipal concerns rather than the large interconnected regional model found elsewhere.”

DiEmidio Ledesma says the problem of abundance is not the United States’ alone, however. “There are so many water utilities across the globe that it’s just a numbers game, I think,” she says. “With the digitalization comes increased risk from adversaries who may be looking to target the water sector through cyber means, because a water facility in Virginia may look very similar now to a water utility in California, to a water utility in Europe, to a water utility in Asia. So because they’re using the same components, they can be targeted through the same means.

“And so we do continue to see utilities in critical infrastructure and water facilities targeted by adversaries,” she adds. “Or at least we continue to hear from governments from the United States, from other governments, that they are being targeted.”

A U.S. turnaround imminent?

Last month, Arkansas congressman Rick Crawford and California congressman John Duarte introduced the Water Risk and Resilience Organization (WRRO) Establishment Act to found a U.S. federal agency to monitor and guard against the above risks. According to Kevin Morley, manager of federal relations at the Washington, D.C.–based American Water Works Association, it’s a welcome sign of what could be some imminent relief, if the bill can make it into law.

“We developed a white paper recommending this type of approach in 2021,” Morley says. “I have testified to that effect several times, given our recognition that some level of standardization is necessary to provide a common understanding of expectations.”

“I think the best phrase to sum it up is ‘target rich, resource poor.’” —Katherine DiEmidio Ledesma, Dragos

Hazell, of Yorkshire Water, notes that even if the bill does become law, it may not be all its supporters might want. “While the development of the act is encouraging, it feels a little late and limited,” he says. By contrast, Hazell points to the United Kingdom and the European Union’s Network and Information Security Directives in 2016 and 2023, which coordinate cyberdefenses across a range of a member country’s critical infrastructure. The patchwork quilt approach that the United States appears to be going for, he notes, could still leave substantial holes.

“I think the best phrase to sum it up is ‘target rich, resource poor,’” says DiEmidio Ledesma, about the cybersecurity challenges municipal water systems pose today. “It’s a very distributed network of critical infrastructure. [There are] many, many small community water facilities, and [they're] very vital to communities throughout the United States and internationally.”

In response to the emerging threats, Anne Neuberger, U.S. deputy national security advisor for cyber and emerging technologies, issued a public call in March for U.S. states to report on their plans for securing the cyberdefenses of their water and wastewater systems by May 20. When contacted by IEEE Spectrum about the results and responses from Neuberger’s summons, a U.S. State Department spokesperson declined to comment.

  • ✇Semiconductor Engineering
  • Using AI/ML To Combat CyberattacksJohn Koon
    Machine learning is being used by hackers to find weaknesses in chips and systems, but it also is starting to be used to prevent breaches by pinpointing hardware and software design flaws. To make this work, machine learning (ML) must be trained to identify vulnerabilities, both in hardware and software. With proper training, ML can detect cyber threats and prevent them from accessing critical data. As ML encounters additional cyberattack scenarios, it can learn and adapt, helping to build a mor
     

Using AI/ML To Combat Cyberattacks

Od: John Koon
9. Květen 2024 v 09:07

Machine learning is being used by hackers to find weaknesses in chips and systems, but it also is starting to be used to prevent breaches by pinpointing hardware and software design flaws.

To make this work, machine learning (ML) must be trained to identify vulnerabilities, both in hardware and software. With proper training, ML can detect cyber threats and prevent them from accessing critical data. As ML encounters additional cyberattack scenarios, it can learn and adapt, helping to build a more sophisticated defense system that includes hardware, software, and how they interface with larger systems. It also can automate many cyber defense tasks with minimum human intervention, which saves time, effort, and money.

ML is capable of sifting through large volumes of data much faster than humans. Potentially, it can reduce or remove human errors, lower costs, and boost cyber defense capability and overall efficiency. It also can perform such tasks as connection authentication, system design, vulnerability detection, and most important, threat detection through pattern and behavioral analysis.

“AI/ML is finding many roles protecting and enhancing security for digital devices and services,” said David Maidment, senior director of market development at Arm. “However, it is also being used as a tool for increasingly sophisticated attacks by threat actors. AI/ML is essentially a tool tuned for very advanced pattern recognition across vast data sets. Examples of how AI/ML can enhance security include network-based monitoring to spot rogue behaviors at scale, code analysis to look for vulnerabilities on new and legacy software, and automating the deployment of software to keep devices up-to-date and secure.”

This means that while AI/ML can be used as a force for good, inevitably bad actors will use it to increase the sophistication and scale of attacks. “Building devices and services based on security best practices, having a hardware-protected root of trust (RoT), and an industry-wide methodology to standardize and measure security are all essential,” Maidment said. “The focus on security, including the rapid growth of AI/ML, is certainly driving industry and government discussions as we work on solutions to maximize AI/ML’s benefits and minimize any potential harmful impact.”

Zero trust is a fundamental requirement when it comes to cybersecurity. Before a user or device is allowed to connect to the network or server, requests have to be authenticated to make sure they are legitimate and authorized. ML will enhance the authentication process, including password management, phishing prevention, and malware detection.

Areas that bad actors look to exploit are software design vulnerabilities and weak points in systems and networks. Once hackers uncover these vulnerabilities, they can be used as a point of entrance to the network or systems. ML can detect these vulnerabilities and alert administrators.

Taking a proactive approach by doing threat detection is essential in cyber defense. ML pattern and behavioral analysis strengths support this strategy. When ML detects unusual behavior in data traffic flow or patterns, it sends an alert about abnormal behavior to the administrator. This is similar to the banking industry’s practice of watching for credit card use that does not follow an established pattern. A large purchase overseas on a credit card with a pattern of U.S. use only for moderate amounts would trigger an alert, for example.

As hackers become more sophisticated with new attack vectors, whether it is new ransomware or distributed denial of service (DDoS) attacks, ML will do a much better job than humans in detecting these unknown threats.

Limitations of ML in cybersecurity
While ML provides many benefits, its value depends on the data used to train it. The more that can be used to train the ML model, the better it is at detecting fraud and cyber threats. But acquiring this data raises overall cybersecurity system design expenses. The model also needs constant maintenance and tuning to sustain peak performance and meet the specific needs of users. And while ML can do many of the tasks, it still requires some human involvement, so it’s essential to understand both cybersecurity and how well ML functions.

While ML is effective in fending off many of the cyberattacks, it is not a panacea. “The specific type of artificial intelligence typically referenced in this context is machine learning (ML), which is the development of algorithms that can ingest large volumes of training data, then generalize and make meaningful observations and decisions based on novel data,” said Scott Register, vice president of security solutions at Keysight Technologies. “With the right algorithms and training, AI/ML can be used to pinpoint cyberattacks which might otherwise be difficult to detect.”

However, no one — at least in the commercial space — has delivered a product that can detect very subtle cyberattacks with complete accuracy. “The algorithms are getting better all the time, so it’s highly probable that we’ll soon have commercial products that can detect and respond to attacks,” Register said. “We must keep in mind, however, that attackers don’t sit still, and they’re well-funded and patient. They employ ‘offensive AI,’ which means they use the same types of techniques and algorithms to generate attacks which are unlikely to be detected.”

ML implementation considerations
For any ML implementation, a strong cyber defense system is essential, but there’s no such thing as a completely secure design. Instead, security is a dynamic and ongoing process that requires constant fine-tuning and improvement against ever-changing cyberattacks. Implementing ML requires a clear security roadmap, which should define requirements. It also requires implementing a good cybersecurity process, which secures individual hardware and software components, as well as some type of system testing.

“One of the things we advise is to start with threat modeling to identify a set of critical design assets to protect from an adversary under confidentiality or integrity,” said Jason Oberg, CTO at Cycuity. “From there, you can define a set of very succinct, secure requirements for the assets. All of this work is typically done at the architecture level. We do provide education, training and guidance to our customers, because at that level, if you don’t have succinct security requirements defined, then it’s really hard to verify or check something in the design. What often happens is customers will say, ‘I want to have a secure chip.’ But it’s not as easy as just pressing a button and getting a green check mark that confirms the chip is now secure.”

To be successful, engineering teams must start at the architectural stages and define the security requirements. “Once that is done, they can start actually writing the RTL,” Oberg said. “There are tools available to provide assurances these security requirements are being met, and run within the existing simulation and emulation environments to help validate the security requirements, and help identify any unknown design weaknesses. Generally, this helps hardware and verification engineers increase their productivity and build confidence that the system is indeed meeting the security requirements.”

Figure 1: A cybersecurity model includes multiple stages, progressing from the very basic to in-depth. It is important for organizations to know what stages their cyber defense system are. Source: Cycuity

Fig. 1: A cybersecurity model includes multiple stages, progressing from the very basic to in-depth. It is important for organizations to know what stages their cyber defense system are. Source: Cycuity

Steve Garrison, senior vice president, marketing of Stellar Cyber, noted that if cyber threats were uncovered during the detection process, so many data files may be generated that they will be difficult for humans to sort through. Graphical displays can speed up the process and reduce the overall mean time to detection (MTTD) and mean time to response (MTTR).

Figure 2: Using graphical displays  would reduce the overall meantime to detection (MTTD) and meantime to response (MTTR). Source: Stellar Cyber

Fig. 2: Using graphical displays  would reduce the overall meantime to detection (MTTD) and meantime to response (MTTR). Source: Stellar Cyber

Testing is essential
Another important stage in the design process is testing, whereby each system design requires a vigorous attack simulation tool to weed out the basic oversights to ensure it meets the predefined standard.

“First, if you want to understand how defensive systems will function in the real world, it’s important to test them under conditions, which are as realistic as possible,” Keysight’s Register said. “The network environment should have the same amount of traffic, mix of applications, speeds, behavioral characteristics, and timing as the real world. For example, the timing of a sudden uptick in email and social media traffic corresponds to the time when people open up their laptops at work. The attack traffic needs to be as realistic as possible as well – hackers try hard not to be noticed, often preferring ‘low and slow’ attacks, which may take hours or days to complete, making detection much more difficult. The same obfuscation techniques, encryption, and decoy traffic employed by threat actors needs to be simulated as accurately as possible.”

Further, due to mistaken assumptions during testing, defensive systems often perform great in the lab, yet fail spectacularly in production networks.  “Afterwards we hear, for example, ‘I didn’t think hackers would encrypt their malware,’ or ‘Internal e-mails weren’t checked for malicious attachments, only those from external senders,’” Register explained. “Also, in security testing, currency is key. Attacks and obfuscation techniques are constantly evolving. If a security system is tested against stale attacks, then the value of that testing is limited. The offensive tools should be kept as up to date as possible to ensure the most effective performance against the tools a system is likely to encounter in the wild.”

Semiconductor security
Almost all system designs depend on semiconductors, so it is important to ensure that any and all chips, firmware, FPGAs, and SoCs are secure – including those that perform ML functionality.

“Semiconductor security is a constantly evolving problem and requires an adaptable solution, said Jayson Bethurem, vice president marketing and business development at Flex Logix. “Fixed solutions with current cryptography that are implemented today will inevitably be challenged in the future. Hackers today have more time, resources, training, and motivation to disrupt technology. With technology increasing in every facet of our lives, defending against this presents a real challenge. We also have to consider upcoming threats, namely quantum computing.”

Many predict that quantum computing will be able to crack current cryptography solutions in the next few years. “Fortunately, semiconductor manufacturers have solutions that can enable cryptography agility, which can dynamically adapt to evolving threats,” Bethurem said. “This includes both updating hardware accelerated cryptography algorithms and obfuscating them, an approach that increases root of trust and protects valuable IP secrets. Advanced solutions like these also involve devices randomly creating their own encryption keys, making it harder for algorithms to crack encryption codes.”

Advances in AI/ML algorithms can adapt to new threats and reduce latency of algorithm updates from manufacturers. This is particularly useful with reconfigurable eFPGA IP, which can be implemented into any semiconductor device to thwart all current and future threats and optimized to run AI/ML-based cryptography solutions. The result is a combination of high-performance processing, scalability, and low-latency attack response.

Chips that support AI/ML algorithms need not only computing power, but also accelerators for those algorithms. In addition, all of this needs to happen without exceeding a tight power budget.

“More AI/ML systems run at tiny edges rather than at the core,” said Detlef Houdeau, senior director of design system architecture at Infineon Technologies. “AI/ML systems don’t need any bigger computer and/or cloud. For instance, a Raspberry Pi for a robot in production can have more than 3 AI/ML algorithms working in parallel. A smartphone has more than 10 AI/ML functions in the phone, and downloading new apps brings new AI/ML algorithms into the device. A pacemaker can have 2 AI/ML algorithms. Security chips, meanwhile, need a security architecture as well as accelerators for encryption. Combining an AI/ML accelerator with an encryption accelerator in the same chip could increase the performance in microcontroller units, and at the same time foster more security at the edge. The next generation of microelectronics could show this combination.”

After developers have gone through design reviews and the systems have run vigorous tests, it helps to have third-party certification and/or credentials to ensure the systems are indeed secure from a third-party independent viewpoint.

“As AI, and recently generative AI, continue to transform all markets, there will be new attack vectors to mitigate against,” said Arm’s Maidment. “We expect to see networks become smarter in the way they monitor traffic and behaviors. The use of AI/ML allows network-based monitoring at scale to allow potential unexpected or rogue behavior to be identified and isolated. Automating network monitoring based on AI/ML will allow an extra layer of defense as networks scale out and establish effectively a ‘zero trust’ approach. With this approach, analysis at scale can be tuned to look at particular threat vectors depending on the use case.”

With an increase in AI/ML adoption at the edge, a lot of this is taking place on the CPU. “Whether it is handling workloads in their entirety, or in combination with a co-processor like a GPU or NPU, how applications are deployed across the compute resources needs to be secure and managed centrally within the edge AI/ML device,” Maidment said. “Building edge AI/ML devices based on a hardware root of trust is essential. It is critical to have privileged access control of what code is allowed to run where using a trusted memory management architecture. Arm continually invests in security, and the Armv9 architecture offers a number of new security features. Alongside architecture improvements, we continue to work in partnership with the industry on our ecosystem security framework and certification scheme, PSA Certified, which is based on a certified hardware RoT. This hardware base helps to improve the security of systems and fulfill the consumer expectation that as devices scale, they remain secure.”

Outlook
It is important to understand that threat actors will continue to evolve attacks using AI/ML. Experts suggest that to counter such attacks, organizations, institutions, and government agencies will have to continually improve defense strategies and capabilities, including AI/ML deployment.

AI/ML can be used as weapon from an attacker for industrial espionage and/or industrial sabotage, and stopping incursions will require a broad range of cyberattack prevention and detection tools, including AI/ML functionality for anomaly detection. But in general, hackers are almost always one step ahead.

According to Register, “the recurring cycle is: 1) hackers come out with a new tool or technology that lets them attack systems or evade detection more effectively; 2) those attacks cause enough economic damage that the industry responds and develops effective countermeasures; 3) the no-longer-new hacker tools are still employed effectively, but against targets that haven’t bothered to update their defenses; 4) hackers develop new offensive tools that are effective against the defensive techniques of high-value targets, and the cycle starts anew.”

Related Reading
Securing Chip Manufacturing Against Growing Cyber Threats
Suppliers are the number one risk, but reducing attacks requires industry-wide collaboration.
Data Center Security Issues Widen
The number and breadth of hardware targets is increasing, but older attack vectors are not going away. Hackers are becoming more sophisticated, and they have a big advantage.

The post Using AI/ML To Combat Cyberattacks appeared first on Semiconductor Engineering.

  • ✇Semiconductor Engineering
  • Using AI/ML To Combat CyberattacksJohn Koon
    Machine learning is being used by hackers to find weaknesses in chips and systems, but it also is starting to be used to prevent breaches by pinpointing hardware and software design flaws. To make this work, machine learning (ML) must be trained to identify vulnerabilities, both in hardware and software. With proper training, ML can detect cyber threats and prevent them from accessing critical data. As ML encounters additional cyberattack scenarios, it can learn and adapt, helping to build a mor
     

Using AI/ML To Combat Cyberattacks

Od: John Koon
9. Květen 2024 v 09:07

Machine learning is being used by hackers to find weaknesses in chips and systems, but it also is starting to be used to prevent breaches by pinpointing hardware and software design flaws.

To make this work, machine learning (ML) must be trained to identify vulnerabilities, both in hardware and software. With proper training, ML can detect cyber threats and prevent them from accessing critical data. As ML encounters additional cyberattack scenarios, it can learn and adapt, helping to build a more sophisticated defense system that includes hardware, software, and how they interface with larger systems. It also can automate many cyber defense tasks with minimum human intervention, which saves time, effort, and money.

ML is capable of sifting through large volumes of data much faster than humans. Potentially, it can reduce or remove human errors, lower costs, and boost cyber defense capability and overall efficiency. It also can perform such tasks as connection authentication, system design, vulnerability detection, and most important, threat detection through pattern and behavioral analysis.

“AI/ML is finding many roles protecting and enhancing security for digital devices and services,” said David Maidment, senior director of market development at Arm. “However, it is also being used as a tool for increasingly sophisticated attacks by threat actors. AI/ML is essentially a tool tuned for very advanced pattern recognition across vast data sets. Examples of how AI/ML can enhance security include network-based monitoring to spot rogue behaviors at scale, code analysis to look for vulnerabilities on new and legacy software, and automating the deployment of software to keep devices up-to-date and secure.”

This means that while AI/ML can be used as a force for good, inevitably bad actors will use it to increase the sophistication and scale of attacks. “Building devices and services based on security best practices, having a hardware-protected root of trust (RoT), and an industry-wide methodology to standardize and measure security are all essential,” Maidment said. “The focus on security, including the rapid growth of AI/ML, is certainly driving industry and government discussions as we work on solutions to maximize AI/ML’s benefits and minimize any potential harmful impact.”

Zero trust is a fundamental requirement when it comes to cybersecurity. Before a user or device is allowed to connect to the network or server, requests have to be authenticated to make sure they are legitimate and authorized. ML will enhance the authentication process, including password management, phishing prevention, and malware detection.

Areas that bad actors look to exploit are software design vulnerabilities and weak points in systems and networks. Once hackers uncover these vulnerabilities, they can be used as a point of entrance to the network or systems. ML can detect these vulnerabilities and alert administrators.

Taking a proactive approach by doing threat detection is essential in cyber defense. ML pattern and behavioral analysis strengths support this strategy. When ML detects unusual behavior in data traffic flow or patterns, it sends an alert about abnormal behavior to the administrator. This is similar to the banking industry’s practice of watching for credit card use that does not follow an established pattern. A large purchase overseas on a credit card with a pattern of U.S. use only for moderate amounts would trigger an alert, for example.

As hackers become more sophisticated with new attack vectors, whether it is new ransomware or distributed denial of service (DDoS) attacks, ML will do a much better job than humans in detecting these unknown threats.

Limitations of ML in cybersecurity
While ML provides many benefits, its value depends on the data used to train it. The more that can be used to train the ML model, the better it is at detecting fraud and cyber threats. But acquiring this data raises overall cybersecurity system design expenses. The model also needs constant maintenance and tuning to sustain peak performance and meet the specific needs of users. And while ML can do many of the tasks, it still requires some human involvement, so it’s essential to understand both cybersecurity and how well ML functions.

While ML is effective in fending off many of the cyberattacks, it is not a panacea. “The specific type of artificial intelligence typically referenced in this context is machine learning (ML), which is the development of algorithms that can ingest large volumes of training data, then generalize and make meaningful observations and decisions based on novel data,” said Scott Register, vice president of security solutions at Keysight Technologies. “With the right algorithms and training, AI/ML can be used to pinpoint cyberattacks which might otherwise be difficult to detect.”

However, no one — at least in the commercial space — has delivered a product that can detect very subtle cyberattacks with complete accuracy. “The algorithms are getting better all the time, so it’s highly probable that we’ll soon have commercial products that can detect and respond to attacks,” Register said. “We must keep in mind, however, that attackers don’t sit still, and they’re well-funded and patient. They employ ‘offensive AI,’ which means they use the same types of techniques and algorithms to generate attacks which are unlikely to be detected.”

ML implementation considerations
For any ML implementation, a strong cyber defense system is essential, but there’s no such thing as a completely secure design. Instead, security is a dynamic and ongoing process that requires constant fine-tuning and improvement against ever-changing cyberattacks. Implementing ML requires a clear security roadmap, which should define requirements. It also requires implementing a good cybersecurity process, which secures individual hardware and software components, as well as some type of system testing.

“One of the things we advise is to start with threat modeling to identify a set of critical design assets to protect from an adversary under confidentiality or integrity,” said Jason Oberg, CTO at Cycuity. “From there, you can define a set of very succinct, secure requirements for the assets. All of this work is typically done at the architecture level. We do provide education, training and guidance to our customers, because at that level, if you don’t have succinct security requirements defined, then it’s really hard to verify or check something in the design. What often happens is customers will say, ‘I want to have a secure chip.’ But it’s not as easy as just pressing a button and getting a green check mark that confirms the chip is now secure.”

To be successful, engineering teams must start at the architectural stages and define the security requirements. “Once that is done, they can start actually writing the RTL,” Oberg said. “There are tools available to provide assurances these security requirements are being met, and run within the existing simulation and emulation environments to help validate the security requirements, and help identify any unknown design weaknesses. Generally, this helps hardware and verification engineers increase their productivity and build confidence that the system is indeed meeting the security requirements.”

Figure 1: A cybersecurity model includes multiple stages, progressing from the very basic to in-depth. It is important for organizations to know what stages their cyber defense system are. Source: Cycuity

Fig. 1: A cybersecurity model includes multiple stages, progressing from the very basic to in-depth. It is important for organizations to know what stages their cyber defense system are. Source: Cycuity

Steve Garrison, senior vice president, marketing of Stellar Cyber, noted that if cyber threats were uncovered during the detection process, so many data files may be generated that they will be difficult for humans to sort through. Graphical displays can speed up the process and reduce the overall mean time to detection (MTTD) and mean time to response (MTTR).

Figure 2: Using graphical displays  would reduce the overall meantime to detection (MTTD) and meantime to response (MTTR). Source: Stellar Cyber

Fig. 2: Using graphical displays  would reduce the overall meantime to detection (MTTD) and meantime to response (MTTR). Source: Stellar Cyber

Testing is essential
Another important stage in the design process is testing, whereby each system design requires a vigorous attack simulation tool to weed out the basic oversights to ensure it meets the predefined standard.

“First, if you want to understand how defensive systems will function in the real world, it’s important to test them under conditions, which are as realistic as possible,” Keysight’s Register said. “The network environment should have the same amount of traffic, mix of applications, speeds, behavioral characteristics, and timing as the real world. For example, the timing of a sudden uptick in email and social media traffic corresponds to the time when people open up their laptops at work. The attack traffic needs to be as realistic as possible as well – hackers try hard not to be noticed, often preferring ‘low and slow’ attacks, which may take hours or days to complete, making detection much more difficult. The same obfuscation techniques, encryption, and decoy traffic employed by threat actors needs to be simulated as accurately as possible.”

Further, due to mistaken assumptions during testing, defensive systems often perform great in the lab, yet fail spectacularly in production networks.  “Afterwards we hear, for example, ‘I didn’t think hackers would encrypt their malware,’ or ‘Internal e-mails weren’t checked for malicious attachments, only those from external senders,’” Register explained. “Also, in security testing, currency is key. Attacks and obfuscation techniques are constantly evolving. If a security system is tested against stale attacks, then the value of that testing is limited. The offensive tools should be kept as up to date as possible to ensure the most effective performance against the tools a system is likely to encounter in the wild.”

Semiconductor security
Almost all system designs depend on semiconductors, so it is important to ensure that any and all chips, firmware, FPGAs, and SoCs are secure – including those that perform ML functionality.

“Semiconductor security is a constantly evolving problem and requires an adaptable solution, said Jayson Bethurem, vice president marketing and business development at Flex Logix. “Fixed solutions with current cryptography that are implemented today will inevitably be challenged in the future. Hackers today have more time, resources, training, and motivation to disrupt technology. With technology increasing in every facet of our lives, defending against this presents a real challenge. We also have to consider upcoming threats, namely quantum computing.”

Many predict that quantum computing will be able to crack current cryptography solutions in the next few years. “Fortunately, semiconductor manufacturers have solutions that can enable cryptography agility, which can dynamically adapt to evolving threats,” Bethurem said. “This includes both updating hardware accelerated cryptography algorithms and obfuscating them, an approach that increases root of trust and protects valuable IP secrets. Advanced solutions like these also involve devices randomly creating their own encryption keys, making it harder for algorithms to crack encryption codes.”

Advances in AI/ML algorithms can adapt to new threats and reduce latency of algorithm updates from manufacturers. This is particularly useful with reconfigurable eFPGA IP, which can be implemented into any semiconductor device to thwart all current and future threats and optimized to run AI/ML-based cryptography solutions. The result is a combination of high-performance processing, scalability, and low-latency attack response.

Chips that support AI/ML algorithms need not only computing power, but also accelerators for those algorithms. In addition, all of this needs to happen without exceeding a tight power budget.

“More AI/ML systems run at tiny edges rather than at the core,” said Detlef Houdeau, senior director of design system architecture at Infineon Technologies. “AI/ML systems don’t need any bigger computer and/or cloud. For instance, a Raspberry Pi for a robot in production can have more than 3 AI/ML algorithms working in parallel. A smartphone has more than 10 AI/ML functions in the phone, and downloading new apps brings new AI/ML algorithms into the device. A pacemaker can have 2 AI/ML algorithms. Security chips, meanwhile, need a security architecture as well as accelerators for encryption. Combining an AI/ML accelerator with an encryption accelerator in the same chip could increase the performance in microcontroller units, and at the same time foster more security at the edge. The next generation of microelectronics could show this combination.”

After developers have gone through design reviews and the systems have run vigorous tests, it helps to have third-party certification and/or credentials to ensure the systems are indeed secure from a third-party independent viewpoint.

“As AI, and recently generative AI, continue to transform all markets, there will be new attack vectors to mitigate against,” said Arm’s Maidment. “We expect to see networks become smarter in the way they monitor traffic and behaviors. The use of AI/ML allows network-based monitoring at scale to allow potential unexpected or rogue behavior to be identified and isolated. Automating network monitoring based on AI/ML will allow an extra layer of defense as networks scale out and establish effectively a ‘zero trust’ approach. With this approach, analysis at scale can be tuned to look at particular threat vectors depending on the use case.”

With an increase in AI/ML adoption at the edge, a lot of this is taking place on the CPU. “Whether it is handling workloads in their entirety, or in combination with a co-processor like a GPU or NPU, how applications are deployed across the compute resources needs to be secure and managed centrally within the edge AI/ML device,” Maidment said. “Building edge AI/ML devices based on a hardware root of trust is essential. It is critical to have privileged access control of what code is allowed to run where using a trusted memory management architecture. Arm continually invests in security, and the Armv9 architecture offers a number of new security features. Alongside architecture improvements, we continue to work in partnership with the industry on our ecosystem security framework and certification scheme, PSA Certified, which is based on a certified hardware RoT. This hardware base helps to improve the security of systems and fulfill the consumer expectation that as devices scale, they remain secure.”

Outlook
It is important to understand that threat actors will continue to evolve attacks using AI/ML. Experts suggest that to counter such attacks, organizations, institutions, and government agencies will have to continually improve defense strategies and capabilities, including AI/ML deployment.

AI/ML can be used as weapon from an attacker for industrial espionage and/or industrial sabotage, and stopping incursions will require a broad range of cyberattack prevention and detection tools, including AI/ML functionality for anomaly detection. But in general, hackers are almost always one step ahead.

According to Register, “the recurring cycle is: 1) hackers come out with a new tool or technology that lets them attack systems or evade detection more effectively; 2) those attacks cause enough economic damage that the industry responds and develops effective countermeasures; 3) the no-longer-new hacker tools are still employed effectively, but against targets that haven’t bothered to update their defenses; 4) hackers develop new offensive tools that are effective against the defensive techniques of high-value targets, and the cycle starts anew.”

Related Reading
Securing Chip Manufacturing Against Growing Cyber Threats
Suppliers are the number one risk, but reducing attacks requires industry-wide collaboration.
Data Center Security Issues Widen
The number and breadth of hardware targets is increasing, but older attack vectors are not going away. Hackers are becoming more sophisticated, and they have a big advantage.

The post Using AI/ML To Combat Cyberattacks appeared first on Semiconductor Engineering.

Research Shows How Little Importance We Place On Data Backup

22. Duben 2024 v 15:25

Data backup isn’t something that we prioritize as much as it should be prioritized. It could be a lifesaver when something goes wrong. And in ...

The post Research Shows How Little Importance We Place On Data Backup appeared first on Gizchina.com.

K-Fault Resistant Partitioning To Assess Redundancy-Based HW Countermeasures To Fault Injections

A technical paper titled “Fault-Resistant Partitioning of Secure CPUs for System Co-Verification against Faults” was published by researchers at Université Paris-Saclay, Graz University of Technology, lowRISC, University Grenoble Alpes, Thales, and Sorbonne University.

Abstract:

“To assess the robustness of CPU-based systems against fault injection attacks, it is necessary to analyze the consequences of the fault propagation resulting from the intricate interaction between the software and the processor. However, current formal methodologies that combine both hardware and software aspects experience scalability issues, primarily due to the use of bounded verification techniques. This work formalizes the notion of k-fault resistant partitioning as an inductive solution to this fault propagation problem when assessing redundancy-based hardware countermeasures to fault injections. Proven security guarantees can then reduce the remaining hardware attack surface to consider in a combined analysis with the software, enabling a full co-verification methodology. As a result, we formally verify the robustness of the hardware lockstep countermeasure of the OpenTitan secure element to single bit-flip injections. Besides that, we demonstrate that previously intractable problems, such as analyzing the robustness of OpenTitan running a secure boot process, can now be solved by a co-verification methodology that leverages a k-fault resistant partitioning. We also report a potential exploitation of the register file vulnerability in two other software use cases. Finally, we provide a security fix for the register file, verify its robustness, and integrate it into the OpenTitan project.”

Find the technical paper here. Published 2024 (preprint).

Tollec, Simon, Vedad Hadžić, Pascal Nasahl, Mihail Asavoae, Roderick Bloem, Damien Couroussé, Karine Heydemann, Mathieu Jan, and Stefan Mangard. “Fault-Resistant Partitioning of Secure CPUs for System Co-Verification against Faults.” Cryptology ePrint Archive (2024).

Related Reading
RISC-V Micro-Architectural Verification
Verifying a processor is much more than making sure the instructions work, but the industry is building from a limited knowledge base and few dedicated tools.
New Concepts Required For Security Verification
Why it’s so difficult to ensure that hardware works correctly and is capable of detecting vulnerabilities that may show up in the field.

The post K-Fault Resistant Partitioning To Assess Redundancy-Based HW Countermeasures To Fault Injections appeared first on Semiconductor Engineering.

  • ✇Boing Boing
  • NYPD is on the lookout for woman who bashed subway musician on the head with a metal bottle (video)Mark Frauenfelder
    Iain S. Forrest, 29, is an electric cellist and a doctor who was attacked last week while performing in a New York subway station. He stated, "At 5:50 pm on February 14th, while performing at 34th St Herald Square station, a woman wearing a mustard jacket, red scarf, and gloves assaulted me by smashing the back of my head with my metal water bottle. — Read the rest The post NYPD is on the lookout for woman who bashed subway musician on the head with a metal bottle (video) appeared first on Boin
     

NYPD is on the lookout for woman who bashed subway musician on the head with a metal bottle (video)

20. Únor 2024 v 22:29
Electric Cellist Doctor Attacked in NYC Subway

Iain S. Forrest, 29, is an electric cellist and a doctor who was attacked last week while performing in a New York subway station. He stated, "At 5:50 pm on February 14th, while performing at 34th St Herald Square station, a woman wearing a mustard jacket, red scarf, and gloves assaulted me by smashing the back of my head with my metal water bottle. — Read the rest

The post NYPD is on the lookout for woman who bashed subway musician on the head with a metal bottle (video) appeared first on Boing Boing.

❌
❌